DOI QR코드

DOI QR Code

Finite Element Analysis of Ultra High Performance Fiber Reinforced Concrete 50M Composite Box Girder

초고강도 섬유보강 콘크리트 50M 합성 박스거더의 유한요소해석

  • Makhbal, Tsas-Orgilmaa (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Kim, Do-Hyun (Department of Civil Engineering, Kumoh National Institute of Technology) ;
  • Han, Sang-Mook (Department of Civil Engineering, Kumoh National Institute of Technology)
  • 타샤 (금오공과대학교 토목공학과) ;
  • 김도현 (금오공과대학교 토목공학과) ;
  • 한상묵 (금오공과대학교 토목공학과)
  • Received : 2018.04.11
  • Accepted : 2018.05.29
  • Published : 2018.06.30

Abstract

The material and geometrical nonlinear finite elment analysis of UHPFRC 50M composite box girder was carried out. Constitute law in tension and compressive region of UHPFRC and HPC were modeled based on specimen test. The accuracy of nonlinear FEM analysis was verified by the experimental result of UHPFRC 50M composite girder. The UHPFRC 50M segmental composite box girder which has 1.5% steel fiber of volume fraction, 135MPa compressive strength and 18MPa tensile strength was tested. The post-tensioned UHPFRC composite girder consisted of three segment UHPFRC U-girder and High Strength Concrete reinforced slab. The parts of UHPFRC girder were modeled by 8nodes hexahedron elements and reinforcement bars and tendons were built by 2nodes linear elements by Midas FEA software. The constitutive laws of concrete materials were selected Multi-linear model both of tension and compression function under total strain crack model, which was included in classifying of smeared crack model. The nonlinearity of reinforcement elements and tendon was simulated by Von Mises criteria. The nonlinear static analysis was applied by incremental-iteration method with convergence criteria of Newton-Raphson. The validation of numerical analysis was verified by comparison with experimental result and numerical analysis result of load-deflection response, neutral axis coordinate change, and cracking pattern of girder. The load-deflection response was fitted very well with comparison to the experimental result. The finite element analysis is seen to satisfactorily predict flexural behavioral responses of post-tensioned, reinforced UHPFRC composite box girder.

초고강도 섬유보강 콘크리트 50M 합성 박스거더에 대한 재료적 비선형 및 기하학적 비선형 유한요소해석이 수행되었다. 인장과 압축구역에서 구성방정식을 실험에 근거하여 모델링하였다. 비선형 유한요소해석의 정확성은 UHPFRC 50M 합성거더의 실험 결과와 비교하여 검증하였다. 1.5% 체적대비 섬유혼입률, 135MPa 압축강도 및 18MPa 휨인장강도 특성을 가진 UHPFRC 50M 합성거더에 대한 휨실험이 수행되었다. 포스트텐션힘으로 결합된 UHPFRC 합성거더는 3개의 UHPFRC 분절 U거더와 고강도 철근콘크리트 슬래브로 구성되었다. Midas FEA를 사용하여 UHPFRC 거더 부분은 8개 절점을 가진 3차원 6면체 모델링을 하였고, 철근와 강연선은 2개 절점을 가진 선형 요소로 모델링하였다. Total strain crack 모델에 기반을 둔 압축 및 인장 다중 선형모델을 사용하여 구성방정식을 설정하였고 균열은 smeared crack model로 구성하였다. 철근과 강연선의 비선형성은 Von Mises 규준을 적용하였다. 비선형 정적해석은 Newton-Rhapson 기법의 수렴치를 사용한 점진적 반복기법을 사용하여 해를 수행하였다. 유한요소해석은 하중-변위관계, 중립축 변화관계 및 균열양상에 대하여 실험 결과와 수치 해석 결과를 비교하여 검증하였다. 하중-변위 관계는 실험 결과와 비교해볼 때 매우 정확한 결과를 보여주고 있다. 본 논문에서 수행한 비선형 유한요소해석법은 철근보강 포스트텐션닝 초고강도 섬유보강 합성 박스거더의 휨거동 해석에 만족한 결과를 보여주고 있다.

Keywords

References

  1. AFGC Ultra High Performance Fibre-Reinforced Recommendations. (2013). 83-90.
  2. Guo, Y.H., Han, S.M. (2010). Fracturel simulation of UHPFRC girder with the interface type model, Journal of the Computational Structural Engineering Institute of Korea, 23(4), 81-94.
  3. Lu, Z.H., Zhao, Y.G. (2010). Empirical Stress-Strain model for Unconfined High-Strength Concrete under Uniaxial Compression, Journal of Materials in Civil Engineering, 22(11), 1181-1186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000095
  4. Mahmud, G.H., Yang, Z., Hassan, A.M.T. (2013). Experimental and numerical studies of size effects of Ultra High Performance Steel Fiber Reinforced Concrete beams, Construction and Building materials, 48, 1027-1034. https://doi.org/10.1016/j.conbuildmat.2013.07.061
  5. Midas Developers and Distributors. (2015). Analysis and Algorithm Midas FEA - Advanced Nonlinear and Detail Analysis Programs.
  6. Singh, M., Sheikh, A.H., Mohamed Ali, M.S., Visintin, P., Griffith, M.C. (2017). Experimental and numerical study on the flexural behavior of ultra-high performance fibre reinforced concrete beams, Construction and Building Materials, 138, 12-25. https://doi.org/10.1016/j.conbuildmat.2017.02.002
  7. U.S. Department of Transportation Federal Highway. (2010). Finite Element Analysis of Ultra-High Performance Concrete: Modeling Structural Performance of AASHTO Type II Girder and 2nd Generation Pi-Girder, FHWA Publication No.FHWA-HRT-11-020.
  8. Yang, J., Su, J.Z., Chen, B., Luo, X., Shen, X. (2017). Experimental Studies and Numerical Analysis on the Flexural Behavior of Reinforced UHPC Beams, AFGC-ACI-fib-RILEM Int, Symposium on Ultra-High Performance Fibre-Reinforced Concrete, UHPFRC 2017, 365-374.