DOI QR코드

DOI QR Code

Effects of Ripening Temperature on Starch Structure and Storage Protein Characteristics of Early Maturing Rice Varieties during Grain Filling

조생종 벼의 평야지 재배에 따른 등숙 온도 차이에 의한 전분구조 및 종자 저장단백질 특성 연구

  • Kwak, Jieun (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Jeom-Sig (National Institute of Crop Science, Rural Development Administration) ;
  • Won, Yong-Jae (National Institute of Crop Science, Rural Development Administration) ;
  • Park, Hyang-Mee (National Institute of Crop Science, Rural Development Administration) ;
  • Kwak, Kang-Su (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Mi-Jung (Research Policy Bureau of Rural Development Administration) ;
  • Lee, Choon-Ki (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Sun-Lim (National Institute of Crop Science, Rural Development Administration) ;
  • Yoon, Mi-Ra (National Institute of Crop Science, Rural Development Administration)
  • 곽지은 (농촌진흥청 국립식량과학원) ;
  • 이점식 (농촌진흥청 국립식량과학원) ;
  • 원용재 (농촌진흥청 국립식량과학원) ;
  • 박향미 (농촌진흥청 국립식량과학원) ;
  • 곽강수 (농촌진흥청 국립식량과학원) ;
  • 김미정 (농촌진흥청 연구정책국) ;
  • 이춘기 (농촌진흥청 국립식량과학원) ;
  • 김선림 (농촌진흥청 국립식량과학원) ;
  • 윤미라 (농촌진흥청 국립식량과학원)
  • Received : 2017.11.24
  • Accepted : 2018.06.05
  • Published : 2018.06.30

Abstract

This study was performed to understand the effects of filling stage temperature on the characteristics of starch and storage protein and the quality of rice grains. Eight early maturing rice varieties were cultivated in Cheolweon (latitude $38^{\circ}15^{\prime}N$) and Suwon (latitude $37^{\circ}16^{\prime}N$) areas in Korea. Rice grown in Suwon, with relatively high ripening period temperatures, showed significantly reduced head rice ratio and eating qualities, higher protein and lower amylose contents than rice grown in Cheolweon. In rice that ripened under high temperature conditions, the starch contained significantly less short-chain amylopectin (DP < 12) but more intermediate- (DP 13-24) and long- (DP > 25) chain amlylopectin compared to rice that ripened under normal conditions. In addition, the electrophoretic pattern of rice storage protein under high- temperature conditions revealed decreased prolamin and increased glutelin contents.

본 시험은 조생종 벼의 평야지 재배에 따른 등숙 온도 차이에 의한 전분구조와 종자 저장단백질 특성 차이를 평가하여 쌀 품질향상을 위한 기초자료 제공을 위해 수행하였다. 이를 위해 조생종 벼 8 품종을 철원 및 등숙기 온도가 상대적 고온조건인 수원에서 재배하여 품질 분석을 수행하였다. 등숙시 고온 조건에서는 일반 조건보다 쌀 완전미율, 아밀로스 함량, 식미총평 점수가 낮은 반면 단백질 함량은 높았다. 전분구조 특성 차이를 평가한 결과, 고온 조건에서는 일반 조건에 비해 아밀로펙틴의 단쇄 사슬길이(DP < 12) 분포비율이 낮은 반면, 중쇄(DP 13-24) 및 장쇄사슬 길이(DP > 25) 분포비율은 높았다. 저장단백질 특성 차이를 평가한 결과, 등숙기 고온 조건의 시료에서는 알부민과 글로불린 함량에는 차이가 없는 반면, 글루텔린 함량은 높고, 프롤라민 함량은 낮았다. 글루텔린의 서브유닛을 분석한 결과, 염기성 글루텔린 조성은 두 지역 간 차이가 없었으나 산성 글루텔린은 등숙기 고온 조건에서 유의하게 높았으며, 특히 ${\alpha}$-1(약 36 kDa)과 ${\alpha}$-3(약 40.6 kDa) 서브유닛의 함량이 높았다. 선행연구에서 고온등숙 조건에서 프롤라민의 감소는 보고가 되었으나, 산성 글루텔린 증가와 관련된 사항은 현재까지 보고된 바가 없어, 향후 이 부분에 대한 추가 검토가 필요할 것으로 고찰된다.

Keywords

References

  1. Association of Official Analytical Chemists (AOAC). 1995. Official Methods of Analysis. 16th ed. AOAC International.
  2. Bao, J. S., L. Jin, P. Xiao, S. Shen, M. Sun, and H. Corke. 2008. Starch physicochemical properties and their associations with microsatellite alleles of starch-synthesizing genes in a rice RIL population. J. Agric. Food Chem. 56: 1589-1594. https://doi.org/10.1021/jf073128+
  3. Bousse, L., S. Mouradian, A. Minalla, H. Yee, K. Williams, and R. Dubrow. 2001. Protein sizing on a microchip Anal. Chem. 73: 1207-1212. https://doi.org/10.1021/ac0012492
  4. Choi, H. C., J. H. Choi, C. S. Lee, Y. B. Kim, and S. Y. Cho. 1994. Varietal and locational variation of grain quality components of rice produced in hilly and high altitude areas in Korea. Korean J. Crop Sci. 39: 27-37.
  5. Choung, J. I., K. Y. Kim, Y. H. Choi, Y. D. Kim, M. K. Ou, H. C. Hong, J. K. Kim, and H. G. Hwang. 2004. Analysis of chemical and eating quality character of the early rice variety at cultured in the southern plain area. Korean J. Breed. Sci. 36: 274-275.
  6. Chun, A., H. J. Lee, B. R. Hamaker, and S. Janaswamy. 2015. Effects of Ripening Temperature on Starch Structure and Gelatinization, Pasting, and Cooking Properties in Rice (Oryza sativa). J. Agric. Food Chem. 63: 3085-3093. https://doi.org/10.1021/jf504870p
  7. Furukawa, S., K. Tanaka, T. Masummura, Y. Ogihara, Y. Kiyokawa, and Y. Wakai. 2006. Influence of rice proteins on eating quality of cooked rice and on aroma and flavor of sake. Cereal Chem. 83: 439-446. https://doi.org/10.1094/CC-83-0439
  8. Hari, B. Krishnan and Jerry, A. White. 1995. Morphometric analysis of rice seed protein bodies. Plant Physiol. 109: 1494-1495.
  9. Hanashiro, I., J. Abe, and S. Hizukuri. 1996. A periodic distribution of the chain length of amylopectin as revealed by highperformance anion-exchange chromatography. Carbohydrate Res. 283: 151-159. https://doi.org/10.1016/0008-6215(95)00408-4
  10. Jiang, H. W., W. M. Dian, and P. Wu. 2003. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry. 63: 53-59. https://doi.org/10.1016/S0031-9422(03)00005-0
  11. Kang, K. J., K. Kim, and S. K. Kim. 1995. Relationship between molecular structure of rice amylopectin and texture of cooked rice. Korean J. Food Sci. Technol. 27: 105-111.
  12. Kwak, J., J. S. Lee, M. R. Yoon, M. J. Kim, A. Chun, and C. K. Lee. 2016. Characteristics of seed storage protein affecting the eating quality of Japonica and Tong-il rice. Korean J. Crop Sci. 61: 227-234. https://doi.org/10.7740/kjcs.2016.61.4.227
  13. Lee, J. H., D. S. Park, D. Y. Kwak, U. S. Yeo, Y. C. Song, C. S. Kim, M. G. Jeon, B. G. Oh, M. S. Shin, and J. K. Kim. 2008. Yield and Grain Quality of Early Maturing Rice Cultivars as Affected by Early Transplanting in Yeongnam Plain Area. Korean J. Crop Sci. 53: 326-332.
  14. Lee, A. S., Y. S. Cho, I. J. Kim, J. K. Ham, and J. S. Jang. 2012. The quality and yield of early maturing rice varieties affected by cultural practices in Gangwon plain region. Korean J. Crop Sci. 57: 233-237. https://doi.org/10.7740/kjcs.2012.57.3.233
  15. Li, X., and T. W. Okita. 1993. Accumulation of prolamins and glutelins during rice seed development: a quantitative evaluation. Plant Cell Physiol. 34: 385-390.
  16. Lin, C., C. Li, S Lin, F. Yang, J. Hung, Y. Liu, and H. Lur. 2010. Influence of high yemperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). 2010. J. Agric. Food Chem. 58: 10545-10552. https://doi.org/10.1021/jf101575j
  17. Matsue, Y., K. Odahara, and M. Hiramatsu. 1995. Differences in amylose content, amylographic characteristics and storage proteins of grains on primary and secondary rachis branches in rice. Jpn. J. Crop Sci. 64: 601-606. https://doi.org/10.1626/jcs.64.601
  18. Nam, M and S. J. Kim. 1996. Electrophoretic characteristics of storage protein in milled rice and relationship between soluble protein and eating quality. RDA. J. Agri. Sci. 38: 10-16.
  19. National Institute of Crop Science, Rural Development Administration. 2003. Evaluate the quality and taste of rice.
  20. Pandey, M. K., N. S. Rani, M. S. Madhav, R. M. Sundaram, G. S. Varaprasad, A. K. P. Sivaranjani, A. Bohra, G. R. Kumar, and A. Kumar. 2012. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnology Advances. 30: 1697-1706. https://doi.org/10.1016/j.biotechadv.2012.08.011
  21. Rural Development Administration. 2012. Standard for research, survey and analysis of agricultural science technology. Suwon, Korea.
  22. Tanaka, N., S. Mitsui, H. Hiroya, K. Yanagi, and S. Komatsu. 2005. Expression and function of proteins during development of the basal region in rice seedling. Mole Cell Proteomics. 4: 796-808. https://doi.org/10.1074/mcp.M400211-MCP200
  23. Tran, T. T. Hoai, Tran D. Suu, Hikaru Satoh, Toshihiro Kumamafu, and S. N. Ahn. 2014. Diversity of glutelin acidic subunit polypeptides in rice cultivars collected from Northern Vietnam. Plant Bleeding. 133: 341-347. https://doi.org/10.1111/pbr.12159
  24. Yamakawa, H., T. Hirose, M. Kuroda, and T. Yamaguchi. 2007. Comprehensive expression profiling of rice grain filling- related genes under high temperature using DNA microarray. Plant Physiology. 144: 258-277. https://doi.org/10.1104/pp.107.098665
  25. Yoon, M. R., S. K. Oh, J. H. Lee, D. J. Kim, I. S. Choi, J. S. Lee and C. K. Kim. 2012. Varietal Variation of Gelatinization and Cooking Properties in Rice having Different Amylose Contents. Korean J. Food & Nutr. 25: 762-769. https://doi.org/10.9799/ksfan.2012.25.4.762
  26. Zhang, C., L. Zhou, Z. Zhu, H. Lu, X. Zhou, Y. Qian, Q. Li, Y. Lu, M. Gu, and Q. Liu. 2016. Characterization of grain quality and starch fine structure of two japonica rice (Oryza Sativa) cultivars with good sensory properties at different temperatures during the filling stage. J. Agric. Food Chem. 64: 4048-4057. https://doi.org/10.1021/acs.jafc.6b00083