DOI QR코드

DOI QR Code

Antioxidant Activity and Inhibitory Effects on Oxidative DNA Damage of Callus from Abeliophyllum distichum Nakai

  • Jang, Tae Won (Department of Medicinal Plant Resources, Andong National University) ;
  • Park, Jae Ho (Department of Medicinal Plant Science, Jungwon University)
  • Received : 2018.05.11
  • Accepted : 2018.06.18
  • Published : 2018.06.30

Abstract

In this study, we evaluated the antioxidant activity and protective effects against oxidative DNA damage of the ethyl acetate fraction from the callus of Abeliophyllum distichum Nakai (ECA). Callus of A. distichum was induced on MS medium containing NAA (1 mg/L) and 2,4-D (1 mg/L), and a sufficient amount was obtained for the extraction by subculture. Acteoside was analyzed and quantified (0.39 mg/g callus) from ECA using the high-performance liquid chromatography-photodiode array detector method. ECA showed very high antioxidative activity as revealed by DPPH and ABTS scavenging assays. The $IC_{50}$ values were 12.4 and $6.8{\mu}g/ml$, respectively. ECA showed protective effects against oxidative DNA damage evaluated by using ${\Psi}X-174$ RF I plasmid DNA. It also inhibited DNA damage by suppressing the oxidative stress-induced protein and mRNA levels of ${\gamma}$-H2AX and p53 in NIH/3T3 cells. In conclusion, ECA protects against oxidative DNA damage through its powerful antioxidant activity.

Keywords

References

  1. Ahn, J.J. and J.H. Park. 2013. Effects of Abeliophyllum distichum Nakai flower extracts on antioxidative activities and inhibition of DNA damage. Korean J. Plant Res. 26(3):355-361 (in Korean). https://doi.org/10.7732/kjpr.2013.26.3.355
  2. Branchi, B., C. Galli and P. Gentili. 2005. Kinetics of oxidation of benzyl alcohols by the dication and radical cation of ABTS. Comparison with laccase-ABTS oxidations: an apparent paradox. Org. Biomol. Chem. 3(14):2604-2614. https://doi.org/10.1039/b504199f
  3. Bennett, C.B., A.L. Lewis, K.K. Baldwin and M.A. Resnick. 1993. Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. Proc. Natl. Acad. Sci. USA. 90(12):5613-5617. https://doi.org/10.1073/pnas.90.12.5613
  4. Bondet, V., W. Brand-Williams and C. Berset. 1997. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT Food Sci. Technol. 30(6):609-615. https://doi.org/10.1006/fstl.1997.0240
  5. Bremer, B., K. Bremer, N. Heidari, P, Erixon, R.G. Olmstead, A.A. Anderberg, M. Kallersjo and E. Barkhordarian. 2002. Phylogenetics of asteroids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol. Phylogenet. Evol. 24(2):274-301. https://doi.org/10.1016/S1055-7903(02)00240-3
  6. Cai, L., J. Koropatnick and M.G. Cherian. 1995. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro. Chem. Biol. Interact. 96(2):143-155. https://doi.org/10.1016/0009-2797(94)03585-V
  7. Celeste, A., O. Fernandez-Capetillo, M.J. Kruhlak, D.R. Pilch, D.W. Staudt, A. Lee, R.F. Bonner, W.M. Bonner and A. Nussenzweig. 2003. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell. Biol. 5(7):675-679. https://doi.org/10.1038/ncb1004
  8. Cook, P.J., B.G. Ju, F. Telese, X. Wang, C.K. Glass and M.G. Rosenfeld. 2009. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591-596. https://doi.org/10.1038/nature07849
  9. Cowan, J.A. 2001. Chemical nucleases. Curr. Opin. Chem. Biol. 5(6):634-642. https://doi.org/10.1016/S1367-5931(01)00259-9
  10. Demple, B. and L. Harrison. 1994. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63:915-948. https://doi.org/10.1146/annurev.bi.63.070194.004411
  11. Fernandez-Capetillo, O., A. Lee, M. Nussenzweig and A. Nussenzweig. 2004. H2AX: the histone guardian of the genome. DNA Repair 3(8-9):959-967. https://doi.org/10.1016/j.dnarep.2004.03.024
  12. Gilgun-Sherki, Y., Z. Rosenbaum, E. Melamed and D. Offen. 2002. Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54(2):271-284. https://doi.org/10.1124/pr.54.2.271
  13. Giri, A. and M.L. Narasu. 2000. Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology 34(1-2):17-26. https://doi.org/10.1023/A:1008138230896
  14. Hamanaka, R.B. and N.S. Chandel. 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35(9):505-513. https://doi.org/10.1016/j.tibs.2010.04.002
  15. Hasty, P. and J. Vijg. 2002. Genomic priorities in aging. Science 296(5571):1250-1251. https://doi.org/10.1126/science.1071808
  16. He, Z.D., K.M. Lau, H.X. Xu, P.C. Li and B.P. Pui-Hay. 2000. Antioxidant activity of phenylethanoid glycosides from Brandisia hancei. J. Ethnopharmacol. 71(3):483-486. https://doi.org/10.1016/S0378-8741(00)00189-6
  17. Hellwig, S., J. Drossard, R.M. Twyman and R. Fischer. 2004. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22(11):1415-1422. https://doi.org/10.1038/nbt1027
  18. Hutchinson, F. 1985. Chemical changes induced in DNA by ionizing radiation. Prog. Nucleic Acid Res. Mol. Biol. 32:116-154.
  19. Imakura, Y., S. Kohayashi and A. Mima. 1985. Bitter phenylpropanoid glycosides from Campsis chinensis. Phytochemistry 24(1):139-146. https://doi.org/10.1016/S0031-9422(00)80823-7
  20. Jang, T.W., S.H. Nam and J.H. Park. 2016. Antioxidant activity and inhibitory effect on oxidative DNA damage of ethyl acetate fractions extracted from cone of red pine (Pinus densiflora). Korean J. Plant Res. 29(2):163-170. https://doi.org/10.7732/kjpr.2016.29.2.163
  21. Jang, T.W. and J.H. Park. 2017. Antioxidative activities and whitening effects of ethyl acetate fractions from the immature seeds of Abeliophyllum distichum. J. Life Sci. 27(5):536-544. https://doi.org/10.5352/JLS.2017.27.5.536
  22. Ji, K., N. Jang and Y. Kim. 2015. Isolation of lactic acid bacteria showing antioxidative and probiotic activities from Kimchi and infant feces. J. Microbiol. Biotechnol. 25(9): 1568-1577. https://doi.org/10.4014/jmb.1501.01077
  23. Jung, Y. and Y. Surh. 2001. Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic. Biol. Med. 30(12):1407-1417. https://doi.org/10.1016/S0891-5849(01)00548-2
  24. Kang, U.C., C.S. Chang and Y.S. Kim. 2000. Genetic structure and conservation considerations of rare endemic Abeliophyllum distichum Nakai (Oleaceae) in Korea. Korean J. Plant Res. 13(2):127-138.
  25. Kanvah, S. and G.B. Schuster. 2004. One-electron oxidation of DNA: The effect of replacement of cytosine with 5-methylcytosine on long-distance radical cation transport and reaction. J. Am. Chem. Soc. 126(23):7341-7344. https://doi.org/10.1021/ja049468i
  26. Khanpour-Ardestani, N., M. Sharifi and M. Behmanesh. 2015. Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production. Cytotechnology 67(3):475-485. https://doi.org/10.1007/s10616-014-9705-4
  27. Kitagawa, S., S. Nishibe, R. Benecke and H. Thieme. 1988. Phenolic compounds from Forsynthia leaves II. Chem. Pharm. Bull. 36(9):3667-3670. https://doi.org/10.1248/cpb.36.3667
  28. Koh, D.S., B.S. Seo and C.H. Lee. 1989. Studies on the in vitro induction of callus from another culture of Abeliophyllum distichum. J. Chonbuk Nat. Univ. 31:153-159.
  29. Li, J., P.F. Wang, R. Zheng, Z.M. Liu and Z. Jia. 1993. Protection of phenylpropanoid glycosides from Pedicularis against oxidative hemolysis in vitro. Planta Med. 59(4):315-317. https://doi.org/10.1055/s-2006-959689
  30. Liu, B., Y. Chen and D.K. St Clair. 2008. ROS and p53: a versatile partnership. Free Radic. Biol. Med. 44(8): 1529-1535. https://doi.org/10.1016/j.freeradbiomed.2008.01.011
  31. Luis, A., F. Domingue, C. Gil and A.P. Duarte. 2009. Antioxidant activity of extracts of Portuguese shrubs: Pterospartum tridentatum, Cytisus scoparius and Erica spp. J. Med. Plants Res. 3(11):886-893.
  32. Meir, S., J. Kanner, B. Akiri and S. Philosoph-Hadas. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 43(7):1813-1819. https://doi.org/10.1021/jf00055a012
  33. Mills, K.D., D.O. Ferguson and F.W. Alt. 2003. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194:77-95. https://doi.org/10.1034/j.1600-065X.2003.00060.x
  34. Oh, H.C., D.G. Kang, T.O. Kwon, K.K. Jang, K.Y. Chai, Y.G. Yun, H.T. Chung and H.S. Lee. 2003. Four glycosides from the leaves of Abeliophyllum distichum with inhibitory effects on angiotensin converting enzyme. Phytother. Res. 17(7):811-813. https://doi.org/10.1002/ptr.1199
  35. Park, G.H., J.H. Park, H.J. Eo, H.M. Song, M.H. Lee, J.R. Lee and J.B. Jeong. 2014. Anti-inflammatory effect of the extracts from Abeliophyllum distichum Nakai in LPS-stimulated RAW264. 7 cells. Korean J. Plant Res. 27(3):209-214. https://doi.org/10.7732/kjpr.2014.27.3.209
  36. Park, G.H., J.H. Park and J.B. Jeong. 2015. Induction of Cyclin D1 Proteasomal Degradation by Branch Extracts from Abeliophyllum distichum Nakai in Human Colorectal Cancer Cells. Korean J. Plant Res. 28(6):682-689. https://doi.org/10.7732/kjpr.2015.28.6.682
  37. Park, J.H. 2011. Antioxidant activities and inhibitory effect on oxidative DNA damage of extracts from Abeliophylli distichi Folium. Korean J. Herbol. 26(4):95-99.
  38. Phillips, E.R. and P.J. McKinnon. 2007. DNA double-strand break repair and development. Oncogene 26:7799-7808. https://doi.org/10.1038/sj.onc.1210877
  39. Polyak, K., Y. Xia, J.L. Zweier, K.W. Kinzler and B. Vogelstein. 1997. A model for p53-induced apoptosis. Nature 389:300-305. https://doi.org/10.1038/38525
  40. Poulsen, H.E., H. Prieme and S. Loft. 1998. Role of oxidative DNA damage in cancer initiation and promotion. Eur. J. Cancer Prev. 7(1):9-16.
  41. Ramachandra Rao, S. and G.A. Ravishankar. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv. 20(2):101-153. https://doi.org/10.1016/S0734-9750(02)00007-1
  42. Rogakou, E.P., D.R. Pilch, A.H. Orr, V.S. Ivanova and W.M. Bonner. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273(10):5858-5868. https://doi.org/10.1074/jbc.273.10.5858
  43. Sablina, A.A., A.V. Budanov, G.V. Ilyinskaya, L.S. Agapova, J.E. Kravchenko and P.M. Chumakov. 2005. The antioxidant function of the p53 tumor suppressor. Nat. Med. 11(12): 1306-1313. https://doi.org/10.1038/nm1320
  44. Schlesier, K., M. Harwat, V. Böhm and R. Bitsch. 2002. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 36(2):177-187. https://doi.org/10.1080/10715760290006411
  45. Sedelnikova, O.A., D.R. Pilch, C. Redon and W.M. Bonner. 2003. Histone H2AX in DNA damage and repair. Cancer Biol. Ther. 2(3):233-235. https://doi.org/10.4161/cbt.2.3.373
  46. Sieniwska, E., T. Baj and K. Glowniak. 2010. Influence of the preliminary sample preparation on the tannins content in the extracts obtained from Mutellina purpurea poir. Annales UMCS Pharmacia 23:47-54.
  47. Simon, H.U., A. Haj-Yehia and F. Levi-Schaffer. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5(5):415-418. https://doi.org/10.1023/A:1009616228304
  48. Stucki, M., J.A. Clapperton, D. Mohammad, M.B. Yaffe, S.J. Smerdon and S.P. Jackson. 2005. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double strand breaks. Cell 123(7):1213-1226. https://doi.org/10.1016/j.cell.2005.09.038
  49. Vacek, J., T. Mozga, K. Cahova, H. Pivonkova and M. Fojta. 2007. Electrochemical sensing of chromium-induced DNA damage: DNA strand breakage by intermediates of chromium (VI) electrochemical reduction. Electroanalysis 19(19-20): 2093-2102. https://doi.org/10.1002/elan.200703917
  50. Van den Berg, R., G.R. Haenen, H. Van den Berg and A. Bast. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66(4):511-517. https://doi.org/10.1016/S0308-8146(99)00089-8
  51. Venkatasubramanian, L. and P. Maruthamuthu. 1989. Kinetics and mechanism of formation and decay of 2,2′‐azinobis‐(3‐ethylbenzothiazole‐6‐sulphonate) radical cation in aqueous solution by inorganic peroxides. Int J Chem. Kinet. 21(6):399-421. https://doi.org/10.1002/kin.550210604
  52. Xie, J.H. and C.F. Wu. 1993. Effect of ethanolic extract of Cistanche deserticola on the contents of monoamine neurotransmitters in rat brain. Zhongcaoyao 24:417-419.
  53. Xiong, Q., K. Hase, Y. Tezuka, T. Tani, T. Namba and S. Kadota. 1998. Hepatoprotective activity of phenylethanoids from Cistanche deserticola. Planta Med. 64(2):120-125. https://doi.org/10.1055/s-2006-957387
  54. Xiong, Q., S. Kadota, T. Tani and T. Namba. 1996. Antioxidative effects of phenylethanoids from Cistanche deserticola. Biol. Pharm. Bull. 19(12):1580-1585. https://doi.org/10.1248/bpb.19.1580

Cited by

  1. Changes in Free Amino Acid, Carotenoid, and Proline Content in Chinese Cabbage (Brassica rapa subsp. Pekinensis) in Response to Drought Stress vol.31, pp.6, 2018, https://doi.org/10.7732/kjpr.2018.31.6.622
  2. Whitening Activity of Abeliophyllum distichum Nakai Leaves According to the Ratio of Prethanol A in the Extracts vol.31, pp.6, 2018, https://doi.org/10.7732/kjpr.2018.31.6.667
  3. The Protective and Inhibitory Effect of Antioxidants Found in Broussonetia kazinoki Siebold against Oxidative DNA Damage vol.32, pp.6, 2019, https://doi.org/10.7732/kjpr.2019.32.6.714
  4. Agricultural Characters, Phenolic and Nutritional Contents, and Antioxidant Activities of Pigeon Pea (Cajanus cajan) Germplasms Cultivated in the Republic of Korea vol.33, pp.1, 2018, https://doi.org/10.7732/kjpr.2020.33.1.50
  5. Prediction and Identification of Biochemical Pathway of Acteoside from Whole Genome Sequences of Abeliophyllum Distichum Nakai, Cultivar Ok Hwang 1ho vol.10, pp.3, 2018, https://doi.org/10.22156/cs4smb.2020.10.03.076
  6. Abeliophyllum distichum Ameliorates High-Fat Diet-Induced Obesity in C57BL/6J Mice by Upregulating the AMPK Pathway vol.12, pp.11, 2018, https://doi.org/10.3390/nu12113320
  7. Antioxidant Activity and Acteoside Analysis of Abeliophyllum distichum vol.9, pp.11, 2018, https://doi.org/10.3390/antiox9111148