DOI QR코드

DOI QR Code

지진 전조인자로서 지하수내 라돈 및 화학성분의 상관성 연구

Relationship of Radon-222 and Chemical Composition of Groundwater as a Precursor of Earthquake

  • 정찬호 (대전대학교 건설안전방재공학과) ;
  • 박준식 (대전대학교 건설안전방재공학과) ;
  • 이용천 (대전대학교 건설안전방재공학과) ;
  • 이유진 (대전대학교 건설안전방재공학과) ;
  • 양재하 (이지아이 컨설팅) ;
  • 김영석 (부경대학교 지구환경과학부) ;
  • 오송민 (대전대학교 건설안전방재공학과)
  • Jeong, Chan Ho (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Park, Jun Sik (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Lee, Yong Cheon (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Lee, Yu Jin (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University) ;
  • Yang, Jae Ha (EGI Consulting) ;
  • Kim, Young Suk (Department of Geological Environment, Bukyoung National University) ;
  • Ou, Song Min (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University)
  • 투고 : 2018.06.11
  • 심사 : 2018.06.21
  • 발행 : 2018.06.30

초록

한반도 지진에 대한 전조인자 연구를 위해 대전, 청원지역 지하수 관측정에서 심도별(-60 m, -100 m)로 화학성분과 라돈, 수위변화를 주기적으로 측정하였다. 관측정 특정심도 지하수의 pH와 전기전도도 값이 포항지진 발생에 따라 큰 폭으로 증가하는 등 비교적 뚜렷한 상관성을 보였다. 주요화학 성분 중에는 대전관측정에서는 ${HCO_3}^-$, $Cl^-$의 농도가 지진과의 연관성 있는 변동을 보이며, 청원지역 관측정에서는 $Mg^{2+}$, $Cl^-$, ${NO_3}^-$의 농도가 변화를 보였다. 그러나 지하수의 주요 화학성분의 변화는 지진발생과의 상관성이 명확하지는 않다. 대전관측정 지하수내 라돈 함량은 지진 발생 전 최저 162 Bq/L에서 지진발생 직후 573 Bq/L로 크게 증가하는 경향을 보여 지진과의 뚜렷한 상관성을 보여주었다. 지하수위의 경우에는 지진발생과의 상관성은 확인되지 않고 갈수기로 인한 지속적인 하강의 양상을 보여주었다. 그러나 포항 진앙지 10 km 이내 국가 지하수 관측정에서는 지진발생 직전 뚜렷한 지하수위의 하강 현상을 보여주었다. 결론적으로 포항지진 진앙지와 약 180 km 이상 떨어진 지역이지만 대전 관측정에서 라돈가스는 지진과 가장 뚜렷한 상관성을 보여 지진전조인자로서의 신뢰성할 수 있는 후보로서 가능성을 확인하였다. pH, 전기전도도, ${HCO_3}^-$, $Cl^-$성분은 지진과 일정 부분 상관성을 보여주었지만 보다 더 장기적인 모니터링을 통하여 지진전조로서 가능성을 확인할 수 있을 것으로 보인다.

In order to study the earthquake precursor in the Korean peninsula, long-term variations of chemical composition, radon-222, and water level were measured at depths (-60 m, -100 m) in the groundwater monitoring wells of the Daejeon and the Cheongwon area. The pH and electrical conductivity of groundwater in the monitoring wells showed some relationship with the Pohang earthquake. The ${HCO_3}^-$ and $Cl^-$ concentration of groundwater in the Daejeon and $Mg^{2+}$, $Cl^-$ and ${NO_3}^-$ in the Cheongwon showed some relation with the Pohang earthquake. However, it is not distinct to find the relationship between their variation and earthquake. The radon-222 concentration in Daejeon was observed a significant increase from a minimum of 162 Bq/L prior to the earthquake to 573 Bq/L right after the earthquake, that indicating a strong correlation with earthquakes. In the case of groundwater levels, it can not find some correlation between earthquakes and continuous decreasing trend in the monitoring wells of Daejeon and Cheongwon area. However, water level of a national groundwater observation well within 10 kilometers of Pohang epicenter was recorded as an abrupt drop right before the earthquake. Conclusively, although the location of monitoring wells is more than 180 kilometers apart from the epicenter of the Pohang earthquake, the radon gas in groundwater can be considered as a reliable candidate among earthquake precursors. The pH, electrical conductivity, ${HCO_3}^-$ and $Cl^-$ among hydrochemicals showed some correlation with earthquake should be monitored during a longer term to recognize distinctly as a precursor of earthquake.

키워드

참고문헌

  1. Cartigny, P., Jendrzejewski, N., Pineau, F., Petit, E., Javoy, M., 2001, Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge, Earth and Planetary Science Letters, 194(1-2), 241-257. https://doi.org/10.1016/S0012-821X(01)00540-4
  2. Che, Y., Yu, J., Zhang, S., Fan, X., Guo, J., Zhang, T., Yang, J., 2002, A discussion on the records of water level ''precursors'' and their discussion in well Shuozhou, Shanxi province. Acta Seismol. Sin, 15(2), 226-233. https://doi.org/10.1007/s11589-002-0012-3
  3. Fu, C.C., Yang, T.F., Chen, C.H., Lee, L.C., Liu, T.K., Walia, V., Kumar, A., Lai, T.H., 2017, Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications. Journal of Asian Earth Sciences, 149, 64-77. https://doi.org/10.1016/j.jseaes.2017.02.032
  4. Goto, M., Yasuoka, Y., Nagahama, H., Moto, J., Omori, Y., Ihara, H., Mukai, T., 2017, Anomalous changes in atmospheric radon concentration before and after the 2011 northern Wakayama earthquake (MJ 5.5), Radiation Protection Dosimetry, 174(3), 412-418.
  5. Greenberg, A.E., Clesceri, L.S., Eaton, E.E., 1992, Standard methods for the examination of water and waste water, The American Public Health Association, Washington DC, 4-55 (in Korean with English abstract).
  6. Huang, F.Q., Jian, C.L., Tang, Y., Xu, G.M., Deng, Z.H., Chi, G.C., 2004, Response changes of some wells in the mainland subsurface fluid monitoring network of China, due to the September 21, 1999, MS7.6 Chi-Chi earthquake. Tectonophysics, 390(1-4), 217-234. https://doi.org/10.1016/j.tecto.2004.03.022
  7. Huang, F., Li, M., Ma, Y., Han, Y., Tian, L., Yan, W., Li, X., 2017, Studies on earthquake precursors in China: A review for recent 50 years. Geodesy Geodyn., 8, 1-12. https://doi.org/10.1016/j.geog.2016.12.002
  8. Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S, Sasaki, Y., Takahashi, M., Sano, Y., 1995, Ground-water radon anomaly before the Kobe earthquake in Japan, Science (New York), 269, 60-61. https://doi.org/10.1126/science.269.5220.60
  9. Jeon, W.H., Kwon, K.S., and Lee, J.Y., 2011, Evaluation of groundwater level changes in Korea due to the earthquake in Japan (magnitude 9.0 in 2011), The Geological Society of Korea, 47(6), 695-706. (in Korean with English abstract).
  10. Jeong, C.H., Kim, M.S., Lee, Y.J., Han, J.S., Jang, H.G., Jo, B.U., 2011, Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheongwon Area. The Journal of Engineering Geology, 21(2), 163-178 (in Korean with English abstract). https://doi.org/10.9720/kseg.2011.21.2.163
  11. Jeong, C.H., Ryu, K.S., Kim, T.S., Han, J.S., and Jo. B.U., 2013, Geochemical occurrence of uranium and Radon-222 in groundwater at test borehole Site in the daejeon area. The Journal of Engineering Geology, 23(2), 171-186 (in Korean with English abstract). https://doi.org/10.9720/kseg.2013.2.171
  12. Jeong, S.Y., Senapathi, 2016, A relationship between water level of national groundwater monitoring wells and Kyeongju earthquake. The Journal of Engineering Geology, 3-4.
  13. Kim, Y.S., Lee, C.M., Lee, S.I., Iida, T., Yoshioka, K., 2003, A Study of the prediction of earthquake occurrence by detecting radon radioactivity. Journal of the Environmental Sciences, 12(6), 677-688. (in Korean with English abstract). https://doi.org/10.5322/JES.2003.12.6.677
  14. Kuo, M., Fan, K., Kuochen, H., Chen, W., 2006, A mechanism for anomalous decline in radon precursory to an earthquake, Groundwater, 44(5), 642-7.
  15. Kuo, T., Tsunomori. F., 2010, A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan, Radiation Measurements, 45(1), 139-142. https://doi.org/10.1016/j.radmeas.2009.08.003
  16. Lee, H.A., Hamm, S.Y., Woo, N.C., 2017, Groundwater monitoring network for earthquake surveillance and prediction, Econ. Environ. Geol., 50(5), 401-414 (in Korean with English abstract). https://doi.org/10.9719/EEG.2017.50.5.401
  17. Liu, C., Wang, G., Zhang, W., Mei, J., 2009, Coseismic responses of groundwater levels in the three gorges well-network to the Wenchuan Ms8.0 earthquake. Earthq. Sci., 22(2), 143-148. https://doi.org/10.1007/s11589-009-0143-x
  18. Sano, Y., Takahata, N., Kagoshima, T., Shibata, T., Onoue, T., Zhao, D., 2016, Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan, Scientific Reports 6, 37939, doi: 10.1038/srep37939.
  19. Skelton, A., Stockmann, G., Andren, M., Tollefsen, E., Sturkell, E., Morth, C., M., Guorunardottir, H., R., Kristmannsdottir, H., Sveinbjornsdottir, A, Jonsson, S., Balic-Zunic, T., Hjartarson, H., Siegmund, H., Keller, N. S, Odling, N, Broman, C., Dahren, B., Kockum, I., 2016, Chemical changes in groundwater before and after earthquakes in northern Iceland, International Workshop on Earthquakes in North Iceland.
  20. Tsunomori, F., Tanaka, H., 2014, Anomalous change of groundwater radon concentration monitored at Nakaizu well in 2011, Radiation Measurements, 60, 35-41. https://doi.org/10.1016/j.radmeas.2013.11.006
  21. Woo, N.C., Piao, J., Lee, J., M., Lee, C.J., Kang, I.O., Choi, D.H., 2015, Abnormal changes in groundwater monitoring data due to small magnitude earthquakes. The Journal of Engineering Geology, 25(1), 21-33 (in Korean with English abstract). https://doi.org/10.9720/kseg.2015.1.21
  22. Ye, Q., Singh, R.P., He, A., Ji, S., Liu, C., 2015, Characteristic behavior of water radon associated with Wenchan and Lushan earthquakes along Longmenshan fault, Radiation Measurements, 76, 44-53. https://doi.org/10.1016/j.radmeas.2015.04.001

피인용 문헌

  1. 경주 활성단층대 및 주변 국가지하수 관측정에서 지진과 수위변동 상관관계 연구 vol.30, pp.4, 2018, https://doi.org/10.9720/kseg.2020.4.617
  2. 전세계의 지진 연구의 추세 분석 vol.42, pp.1, 2018, https://doi.org/10.5467/jkess.2021.42.1.76