DOI QR코드

DOI QR Code

Calcium-related genes associated with intracellular calcification of Emiliania huxleyi (Haptophyta) CCMP 371

  • Nam, Onyou (Department of Life Science, Hanyang University) ;
  • Shiraiwa, Yoshihiro (Faculty of Life and Environmental Sciences, University of Tsukuba) ;
  • Jin, EonSeon (Department of Life Science, Hanyang University)
  • Received : 2018.01.15
  • Accepted : 2018.04.21
  • Published : 2018.06.15

Abstract

Emiliania huxleyi (a haptophyte) is the most abundant coccolithophore species that produces delicate calcite scales called coccoliths. In this study, we identified several candidate genes associated with coccolith production by comparing the transcriptomes of the calcifying (CCMP 371) and non-calcifying (CCMP 2090) strains of E. huxleyi. Among the candidates, genes highly expressed in CCMP 371 were identified. To confirm whether these genes are associated with calcification, we modulated coccolith production in CCMP 371 by culturing it at different calcium concentrations. At an ambient (10 mM) concentration of calcium in the growth medium, CCMP 371 sustained its calcifying ability. However, at a low (0.1 mM) concentration or absence of calcium, there was no calcite formation, demonstrating that calcium-limiting conditions negatively affect calcification. We also evaluated the expression patterns of the putative genes in cells grown at different calcium concentrations by quantitative reverse transcription polymerase chain reaction. In addition, we showed that the growth rate of cells cultured under calcium-limiting conditions does not differ from that under ambient conditions. Further studies are required to investigate the roles of the putative calcification-associated genes at the molecular level.

Keywords

References

  1. Araie, H., Sakamoto, K., Suzuki, I. & Shiraiwa, Y. 2011. Characterization of the selenite uptake mechanism in the coccolithophore Emiliania huxleyi (Haptophyta). Plant Cell Physiol. 52:1204-1210. https://doi.org/10.1093/pcp/pcr070
  2. Badger, M. R. & Price, G. D. 1994. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:369-392. https://doi.org/10.1146/annurev.pp.45.060194.002101
  3. Dyhrman, S. T., Haley, S. T., Birkeland, S. R., Wurch, L. L., Cipriano, M. J. & McArthur, A. G. 2006. Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore Emiliania huxleyi. Appl. Environ. Microbiol. 72:252-260. https://doi.org/10.1128/AEM.72.1.252-260.2006
  4. Fukuda, S.-Y., Suzuki, Y. & Shiraiwa, Y. 2014. Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and $CO_2$ enrichment. Photosynt. Res. 121:299-309. https://doi.org/10.1007/s11120-014-9976-9
  5. Gingras, A. -C., Raught, B. & Sonenberg, N. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913-963. https://doi.org/10.1146/annurev.biochem.68.1.913
  6. Guillard, R. R. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chanley, M. H. (Eds.) Culture of Marine Invertebrate Animals. Springer, Boston, MA, pp. 29-60.
  7. Herfort, L., Loste, E., Meldrum, F. & Thake, B. 2004. Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler. J. Struct. Biol. 148:307-314. https://doi.org/10.1016/j.jsb.2004.07.005
  8. Herfort, L., Thake, B. & Roberts, J. 2002. Acquisition and use of bicarbonate by Emiliania huxleyi. New Phytol. 156:427-436. https://doi.org/10.1046/j.1469-8137.2002.00523.x
  9. Higgins, C. F. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8:67-113. https://doi.org/10.1146/annurev.cb.08.110192.000435
  10. Jones, P. M. & George, A. M. 2004. The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci. 61:682-699. https://doi.org/10.1007/s00018-003-3336-9
  11. Kayano, K. & Shiraiwa, Y. 2009. Physiological regulation of coccolith polysaccharide production by phosphate availability in the coccolithophorid Emiliania huxleyi. Plant Cell Physiol. 50:1522-1531. https://doi.org/10.1093/pcp/pcp097
  12. Langer, G., De Nooijer, L. J. & Oetjen, K. 2010. On the role of the cytoskeleton in coccolith morphogenesis: the effect of cytoskeleton inhibitors. J. Phycol. 46:1252-1256. https://doi.org/10.1111/j.1529-8817.2010.00916.x
  13. Leonardos, N., Read, B., Thake, B. & Young, J. R. 2009. No mechanistic dependence of photosynthesis on calcification in the coccolithophorid Emiliania huxleyi (Haptophyta). J. Phycol. 45:1046-1051. https://doi.org/10.1111/j.1529-8817.2009.00726.x
  14. Mackinder, L., Wheeler, G., Schroeder, D., von Dassow, P., Riebesell, U. & Brownlee, C. 2011. Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environ. Microbiol. 13:3250-3265. https://doi.org/10.1111/j.1462-2920.2011.02561.x
  15. Nguyen, B., Bowers, R. M., Wahlund, T. M. & Read, B. A. 2005. Suppressive subtractive hybridization of and differences in gene expression content of calcifying and noncalcifying cultures of Emiliania huxleyi strain 1516. Appl. Environ. Microbiol. 71:2564-2575. https://doi.org/10.1128/AEM.71.5.2564-2575.2005
  16. Omata, T., Price, G. D., Badger, M. R., Okamura, M., Gohta, S. & Ogawa, T. 1999. Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proc. Natl. Acad. Sci. U. S. A. 96:13571-13576. https://doi.org/10.1073/pnas.96.23.13571
  17. Quinn, P., Bowers, R. M., Zhang, X., Wahlund, T. M., Fanelli, M. A., Olszova, D. & Read, B. A. 2006. cDNA microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta). Appl. Environ. Microbiol. 72:5512-5526. https://doi.org/10.1128/AEM.00343-06
  18. Read, B. A., Kegel, J., Klute, M. J., Kuo, A., Lefebvre, S. C., Maumus, F., Mayer, C., Miller, J., Monier, A., Salamov, A., Young, J., Aguilar, M., Claverie, J. -M., Frickenhaus, S., Gonzalez, K., Herman, E. K., Lin, Y. -C., Napier, J., Ogata, H., Sarno, A. F., Shmutz, J., Schroeder, D., de Vargas, C., Verret, F., von Dassow, P., Valentin, K., Van de Peer, Y., Wheeler, G., Emiliania huxleyi Annotation Consortium, Dacks, J. B., Delwiche, C. F., Dyhrman, S. T., Glockner, G., John, U., Richards, T., Worden, A. Z., Zhang, X. & Grigoriev, I. V. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209-213. https://doi.org/10.1038/nature12221
  19. Revenu, C., Athman, R., Robine, S. & Louvard, D. 2004. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell Biol. 5:635-646. https://doi.org/10.1038/nrm1437
  20. Richier, S., Fiorini, S., Kerros, M. -E., von Dassow, P. & Gattuso, J. -P. 2011. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high $pCO_2$: from physiology to molecular level. Mar. Biol. 158:551-560. https://doi.org/10.1007/s00227-010-1580-8
  21. Satoh, M., Iwamoto, K., Suzuki, I. & Shiraiwa, Y. 2009. Cold stress stimulates intracellular calcification by the coccolithophore, Emiliania huxleyi (Haptophyceae) under phosphate-deficient conditions. Mar. Biotechnol. 11:327-333. https://doi.org/10.1007/s10126-008-9147-0
  22. Soto, A. R., Zheng, H., Shoemaker, D., Rodriguez, J., Read, B. A. & Wahlund, T. M. 2006. Identification and preliminary characterization of two cDNAs encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Appl. Environ. Microbiol. 72:5500-5511. https://doi.org/10.1128/AEM.00237-06
  23. Sun, T., Li, S. & Ren, H. 2013. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells. Front. Plant Sci. 4:512.
  24. Taylor, A. R., Brownlee, C. & Wheeler, G. 2017. Coccolithophore cell biology: chalking up progress. Annu. Rev. Mar. Sci. 9:283-310. https://doi.org/10.1146/annurev-marine-122414-034032
  25. Trimborn, S., Langer, G. & Rost, B. 2007. Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi. Limnol. Oceanogr. 52:2285-2293. https://doi.org/10.4319/lo.2007.52.5.2285
  26. von Dassow, P., Ogata, H., Probert, I., Wincker, P., Da Silva, C., Audic, S., Claverie, J. -M. & de Vargas, C. 2009. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 10:R114. https://doi.org/10.1186/gb-2009-10-10-r114
  27. Wahlund, T. M., Hadaegh, A. R., Clark, R., Nguyen, B., Fanelli, M. & Read, B. A. 2004a. Analysis of expressed sequence tags from calcifying cells of marine coccolithophorid (Emiliania huxleyi). Mar. Biotechnol. 6:278-290.
  28. Wahlund, T. M., Zhang, X. & Read, B. A. 2004b. Expressed sequence tag profiles from calcifying and non-calcifying cultures of Emiliania huxleyi. Micropaleontology 50:145-155. https://doi.org/10.2113/50.Suppl_1.145
  29. Westbroek, P., Brown, C. W., van Bleijswijk, J., Brownlee, C., Brummer, G. J., Conte, M., Egge, J., Fernandez, E., Jordan, R., Knappertsbusch, M., Stefels, J., Veldhuis, M., van der Wal, P. & Young, J. 1993. A model system approach to biological climate forcing: the example of Emiliania huxleyi. Glob. Planet. Change 8:27-46. https://doi.org/10.1016/0921-8181(93)90061-R
  30. Westbroek, P., Young, J. R. & Linschooten, K. 1989. Coccolith production (biomineralization) in the marine alga Emiliania huxleyi. J. Eukaryot. Microbiol. 36:368-373.
  31. Witke, W. 2004. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 14:461-469. https://doi.org/10.1016/j.tcb.2004.07.003

Cited by

  1. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis vol.14, pp.8, 2018, https://doi.org/10.1371/journal.pone.0221938
  2. Evaluation of actin as a reference for quantitative gene expression studies in Emiliania huxleyi (Prymnesiophyceae) under ocean acidification conditions vol.60, pp.2, 2021, https://doi.org/10.1080/00318884.2021.1877517
  3. Validation of superior reference genes for qRT‐PCR and Western blot analyses in marine Emiliania huxleyi–virus model system vol.131, pp.1, 2018, https://doi.org/10.1111/jam.14958