DOI QR코드

DOI QR Code

농경지 토양의 중금속 오염원 및 농작물로의 중금속 전이·축적 평가

Evaluation of Heavy Metal Sources and Its Transfer and Accumulation to Crop in Agricultural Soils

  • 투고 : 2018.06.10
  • 심사 : 2018.06.26
  • 발행 : 2018.06.30

초록

It is important to identify the contaminant sources and to evaluate the fate and transport of heavy metals to crops in agricultural lands. This study was conducted to evaluate metal sources and its transfer and accumulation to crop in agricultural soils. Pollution indices were calculated and multivariate analysis was performed to identify metal sources. To evaluate transfer and accumulation of metals to crops, the contents of phytoavailable metals were evaluated by using single extraction method and the correlation between metal content and soil properties was analyzed. Also the BCF was quantitatively evaluated for investigating the metal transition to each crop grown in the research area. As a result, Cr, Ni, and Co were expected to be mainly derived from geologic factors due to weathering of certain parent rocks. The content of nickel in soils of the research area was slightly higher than that of the concern level criteria based on total concentration, but the amount transferred and accumulated in the crops was actually low. Understanding the contamination characteristics by investigating the pollution sources of heavy metals and its transfer and accumulation to crops through various evaluation techniques could provide important information for proper management of the agricultural land.

키워드

참고문헌

  1. Alloway, B.J., 2013, Sources of heavy metals and metalloids in soils, In: B.J. Alloway (ed.), Heavy Metals in Soils, Springer, Dordrecht, p. 11-50.
  2. Alloway, B.J., Jackson, A.P., and Morgan, H., 1990, The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources, Sci. Tot. Environ., 91, 223-236. https://doi.org/10.1016/0048-9697(90)90300-J
  3. Anjos, C., Magalhaes, M.C., and Abreu, M.M., 2012, Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Braal abandoned lead mine area, Portugal, J. Geochem. Explor., 113, 45-55. https://doi.org/10.1016/j.gexplo.2011.07.004
  4. Barbieri, M., 2016, The importance of enrichment factor (EF) and geoaccumulation index ($I_{geo}$) to evaluate the soil contamination, J. Geol. Geophys., 5(237), 2.
  5. Barman, M., Datta, S.P., Rattan, R.K., and Meena, M.C., 2015, Chemical fractions and bioavailability of nickel in alluvial soils, Plant Soil Environ., 61(1), 17-22.
  6. Beesley, L., Moreno-Jimenez, E., and Gomez-Eyles, J.L., 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil, Environ. Pollut., 158, 2282-2287. https://doi.org/10.1016/j.envpol.2010.02.003
  7. Birch, G.F., Russell, A.T., and Mudge, S.M., 2008, Normalisation techniques in the forensic assessment of contaminated environments, In: Methods in environmental forensics, CRC Press, p. 251-276.
  8. Blaser, P., Zimmermann, S., Luster, J., and Shotyk, W., 2000, Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils, Sci. Tot. Environ., 249, 257-280. https://doi.org/10.1016/S0048-9697(99)00522-7
  9. Borodin, L.S., 1998, Estimated chemical composition and petrochemical evolution of the upper continental crust, Geochem. Int., 37(8), 723-734.
  10. Buchter, B., Davidoff, B., Amacher, M.C., Hinz, C., Iskandar, I.K., and Selim, H.M., 1989. Correlation of Freundlich $K_d$ and n retention parameters with soils and elements, Soil Sci., 148(5), 370-379. https://doi.org/10.1097/00010694-198911000-00008
  11. Cabrera, F., Clemente, L., Barrientos, E.D., Lopez, R., and Murillo, J.M., 1999, Heavy metal pollution of soils affected by the Guadiamar toxic flood, Sci. Tot. Environ., 242(1-3), 117-129. https://doi.org/10.1016/S0048-9697(99)00379-4
  12. CEC, 2006, Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions: thematic strategy for soil protection, SEC(2006)620, SEC(2006)1165, Brussels: Commission of the European Communities (CEC).
  13. Chen, C., Huang, D., and Liu, J., 2009, Functions and toxicity of nickel in plants: recent advances and future prospects, Clean, 37, 304-313.
  14. Christensen, T.H. and Haung, P.M., 1999, Solid phase cadmium and the reactions of aqueous cadmium with soil surfaces. In: Cadmium in soils and plants, Springer, Netherlands, p. 65-96.
  15. Clarke, F.W., 1889, The relative abundance of the chemical elements, Philos. Soc. Washington Bull., 11, 131-142.
  16. Clarke, F.W. and Washington, H.S., 1924, The composition of the Earth's crust, Geological Survey Professional Paper 127, 117 p.
  17. Cloquet, C., Carignan, J., Libourel, G., Sterckeman, T., and Perdix, E., 2006, Tracing source pollution in soils using cadmium and lead isotopes, Environ. Sci. Technol., 40(8), 2525-2530. https://doi.org/10.1021/es052232+
  18. Condie, K.C., 1993, Chemical composition and evolution of the upper continental crust: contrasting results form surface samples and shales, Chem. Geol. 104, 1-37. https://doi.org/10.1016/0009-2541(93)90140-E
  19. D'amore, J.J., Al-Abed, S.R., Scheckel, K.G., and Ryan, J.A., 2005, Methods for speciation of metals in soils: a review, J. Environ. Qual., 34(5), 1707-1745. https://doi.org/10.2134/jeq2004.0014
  20. Dartan, G., Ta pinar, F., and Toroz, I., 2015, Assessment of heavy metals in agricultural soils and their source apportionment: a Turkish district survey, Environ. Monit. Assess., 187(3), 99. https://doi.org/10.1007/s10661-015-4337-5
  21. Davis, H.T., Aelion, C.M., McDermott, S., and Lawson, A.B., 2009, Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation, Environ. Pollut., 157(8-9), 2378-2385. https://doi.org/10.1016/j.envpol.2009.03.021
  22. Degryse, F., Smolders, E., and Parker, D.R., 2009, Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications - a review, Eur. J. Soil Sci., 60, 590-612. https://doi.org/10.1111/j.1365-2389.2009.01142.x
  23. Dragovic, S., Mihailovic, N., and Gajic, B., 2008, Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources, Chemosphere, 72(3), 491-495. https://doi.org/10.1016/j.chemosphere.2008.02.063
  24. Eade, K.E., and Fahrig, W.F., 1973, Regional, lithological, and temporal variation in the abundances of some trace elements in the Canadian Shield, Geol. Surv. Can. Paper, 72-46, 46 p.
  25. Fahrig, W.F. and Eade, K.E., 1968, The chemical evolution of the Canadian Shield, Can. J. Earth Sci., 5, 1247-1252. https://doi.org/10.1139/e68-122
  26. Feng, H., Han, X., Zhang, W., and Yu, L., 2004, A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization, Mar. Pollut. Bull., 49(11-12), 910-915. https://doi.org/10.1016/j.marpolbul.2004.06.014
  27. Gao, S., Luo, T.C., Zhang, B.R., Zhang. H.F., Han, Y.W., Hu, Y.K., and Zhao, Z.D., 1998, Chemical composition of the continental crust as revealed by studies in east China, Geochim. Cosmochim. Acta 62, 1959-1975. https://doi.org/10.1016/S0016-7037(98)00121-5
  28. Gerritse, R.G., Van Driel, W., Smilde, K.W., and Van Luit, B., 1983, Uptake of heavy metals by crops in relation to their concentration in the soil solution, Plant Soil, 75(3), 393-404. https://doi.org/10.1007/BF02369973
  29. Gibbs, R.J., 1993, Metals of the bottom muds in Townsville harbor, Australia, Environ. Pollut., 81(3), 297-300. https://doi.org/10.1016/0269-7491(93)90212-7
  30. Gonzalez-Acevedo, Z.I., Garcia-Zarate, M.A., Nunez-Zarco, E.A., and Anda-Martn, B.I., 2018, Heavy metal sources and anthropogenic enrichment in the environment around the Cerro Prieto Geothermal Field, Mexico, Geothermics, 72, 170-181. https://doi.org/10.1016/j.geothermics.2017.11.004
  31. Guo, L., Zhao, W., Gu, X., Zhao, X., Chen, J., and Cheng, S., 2017, Risk assessment and source identification of 17 metals and metalloids on soils from the half-century old Tungsten mining areas in Lianhuashan, Southern China, Int. J. Environ. Res. Public Health, 14(2), 1475. https://doi.org/10.3390/ijerph14121475
  32. Gupta, A.K. and Sinha, S., 2007, Assessment of single extraction methods for the prediction of bioavailabililty of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil, J. Hazard. Mater., 149(1), 144-150. https://doi.org/10.1016/j.jhazmat.2007.03.062
  33. He, Q., Ren, Y., Mohamed, I., Ali, M., Hassan, W., and Zeng, F., 2013, Assessment of trace and heavy metal distribution by four sequential extraction procedures in a contaminated soil, Soil Water Res., 8(2), 71-76. https://doi.org/10.17221/20/2012-SWR
  34. Hu, Y. and Cheng, H., 2013, Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region, Environ. Sci. Technol., 47(8), 3752-3760. https://doi.org/10.1021/es304310k
  35. Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E.Y., and Cheng, H., 2013, Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization, Environ. Sci. Pollut. Res., 20(9), 6150-6159. https://doi.org/10.1007/s11356-013-1668-z
  36. KFDA (Korea Food and Drug Administration), 2006, The study on heavy metal of agricultural product in Jeju-do, Korea Food and Drug Administration, Chengju.
  37. Kim, K.R., Owens, G., Naidu, R., and Kim, K.H., 2007, Assessment techniques of heavy metal bioavailability in soil: a critical review, Kor. J. Soil Sci. Fert., 40(4), 311-325.
  38. Kim, K.R., Owens, G., and Kwon, S.L. 2010. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: a rhizobox study, J. Environ. Sci., 22(1), 98-105. https://doi.org/10.1016/S1001-0742(09)60080-2
  39. Kong, X., 2014, China must protect high-quality arable land, Nature, 506, 7. https://doi.org/10.1038/506007a
  40. Lago-Vila, M., Arenas-Lago, D., Andrade, L., and Vega, F.A., 2014, Phytoavailable contents of metals in soils from copper mine tailings (Touro mine, Galicia, Spain), J. Geochem. Explor., 147, 159-166. https://doi.org/10.1016/j.gexplo.2014.07.001
  41. Lago-Vila, M., Arenas-Lago, D., Rodriguez-Seijo, A., Andrade Couce, M.L. and Vega, F. A., 2015, Cobalt, chromium, and nickel contents in soils and plants from a serpentinite quarry, Solid Earth, 6, 323-335. https://doi.org/10.5194/se-6-323-2015
  42. Li, S. and Jia, Z., 2018, Heavy metals in soils from a representative rapidly developing megacity (SW China): levels, source identification and apportionment, Catena, 163, 414-423. https://doi.org/10.1016/j.catena.2017.12.035
  43. Likuku, A.S., Mmolawa, K.B., and Gaboutloeloe, G.K., 2013, Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana, Environ. Ecol. Res., 1(2), 32-40.
  44. Lim, G.H., Kim, K.H., Seo, B.H., and Kim, K.R., 2014, Distribution of phytoavailable heavy metals in the Korean agricultural soils affected by the abandoned mining sites and soil properties influencing on the phytoavailable metal pools, Kor. J. Soil Sci. Fert., 47(3), 191-198. https://doi.org/10.7745/KJSSF.2014.47.3.191
  45. Linglong, C., Haitiao, T., Jie, Y., Ping, S., Quansheng, L., Lali, W., Zhixin, N., and Xiaojuan, P., 2015, Multivariate analyses and evaluation of heavy metals by chemometric BCR sequential extraction method in surface sediments from Lingdingyang Bay, south China, Sustainability, 7, 4938-4951. https://doi.org/10.3390/su7054938
  46. Liu, Y.P., Cheng, B.Y., Shyu, G.S., and Chang, T.K., 2010, Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan, Environ. Pollut., 158(1), 235-244. https://doi.org/10.1016/j.envpol.2009.07.015
  47. Loska, K., Wiechula, D., and Korus, I., 2004, Metal contamination of farming soils affected by industry, Environ. Int., 30(2), 159-165. https://doi.org/10.1016/S0160-4120(03)00157-0
  48. Luo, X.S., Xue, Y., Wang, Y.L., Cang, L., Xu, B., and Ding, J., 2015, Source identification and apportionment of heavy metals in urban soil profiles, Chemosphere, 127, 152-157. https://doi.org/10.1016/j.chemosphere.2015.01.048
  49. Ma, L., Yang, Z., Li, L., and Wang, L., 2016, Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China, Environ. Sci. Pollut. Res., 23(17), 17058-17066. https://doi.org/10.1007/s11356-016-6890-z
  50. Manna, A. and Maiti, R., 2017, Geochemical contamination in the mine affected soil of Raniganj Coalfield - a river basin scale assessment, Geosci. Font., https://doi.org/10.1016/j.gsf.2017.10.011
  51. Marrugo-Negrete, J., Pinedo-Hernandez, J., and Diez, S., 2017, Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinu River Basin, Colombia, Environ. Res., 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021
  52. Mazurek, R., Kowalska, J., Gasiorek, M., Zadrozny, P., Jozefowska, A., Zaleski, T., Kepka, W., Tymczuk, M., and Orlowska, K., 2017, Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution, Chemosphere, 168, 839-850. https://doi.org/10.1016/j.chemosphere.2016.10.126
  53. McBride, M., Sauve, S., and Hendershot, W., 1997, Solubility control of Cu, Zn, Cd and Pb in contaminated soils, Eur. J. Soil Sci., 48(2), 337-346. https://doi.org/10.1111/j.1365-2389.1997.tb00554.x
  54. McLennan, S., M., 2001, Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochem. Geophys. Geosys., 2, 200GC00109.
  55. Memoli, V., Eymar, E., Garcia-Delgado, C., Esposito, F., Santorufo, L., De Marco, A., Barile, R., and Maisto, G., 2018, Total and fraction content of elements in volcanic soil: natural or anthropogenic derivation, Sci. Tot. Environ., 625, 16-26. https://doi.org/10.1016/j.scitotenv.2017.12.223
  56. Menzies, N.W., Donn, M.J., and Kopittke, P.M., 2007, Evaluation of extractants for estimation of the phytoavailable trace metals in soils, Environ. Pollut., 145(1), 121-130. https://doi.org/10.1016/j.envpol.2006.03.021
  57. Mico, C., Recatala, L., Peris, M., and Sanchez, J., 2006, Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis, Chemosphere, 65(5), 863-872. https://doi.org/10.1016/j.chemosphere.2006.03.016
  58. Ming-Kai, Q.U., Wei-Dong, L.I., Zhang, C.R., Shan-Qin, W.A.N.G., Yong, Y.A.N.G., and Li-Yuan, H.E., 2013, Source apportionment of heavy metals in soils using multivariate statics and geostatistics, Pedosphere, 23(4), 437-444. https://doi.org/10.1016/S1002-0160(13)60036-3
  59. Miller, W.P., and Miller, D.M., 1987, A micro-pipette method for soil mechanical analysis, Commun. Soil Sci. Plant Anal., 18(1), 1-15. https://doi.org/10.1080/00103628709367799
  60. MOEJ (Ministry of the Environment, Government of Japan), 2012, Revised-guideline on the investigation and countermeasure based on the soil contamination countermeasures Act, Ministry of the Environment, Government of Japan.
  61. Monterroso, C., Rodriguez, F., Chaves, R., Diez, J., Becerra-Castro, C., Kidd, P.S., and Macas, F., 2014, Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain, Appl. Geochem., 44, 3-11. https://doi.org/10.1016/j.apgeochem.2013.09.001
  62. Muller, G., 1969, Index of geoaccumulation in sediments of the Rhine River, Geojournal, 2(3), 108-118.
  63. Naidu, R., Bolan, N.S., Kookana, R.S., and Tiller, K.G., 1994, Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils, Eur. J. Soil Sci. 45(4), 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  64. Novozamsky, I., Lexmond, T.M., and Houba, V.J.G., 1993, A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants, Int. J. Analyt. Chem., 51(1-4), 47-58. https://doi.org/10.1080/03067319308027610
  65. Pan, L., Ma, J., Hu, Y., Su, B., Fang, G., Wang, Y., Wang, Z., Wang, L., and Xiang, B., 2016a, Assessment of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China, Environ. Sci. Pollut. Res., 23(19), 19330-19340. https://doi.org/10.1007/s11356-016-7044-z
  66. Pan, L.B, Ma, J., Wang, X.L., Hou, H., 2016b, Heavy metals in soils from a typical county in Shanxi Province China: levels, sources and spatial distribution, Chemosphere, 148, 248-254. https://doi.org/10.1016/j.chemosphere.2015.12.049
  67. Peralta-Videa, J.R., Lopez, M.L., Narayan, M., Saupe, G., and Gardea-Torresdey, J., 2009, The biochemistry of environmental heavy metal uptake by plant: implications for the food chain, Int. J. Biochem. Cell Biol., 41(8-9), 1665-1677. https://doi.org/10.1016/j.biocel.2009.03.005
  68. Peucker-Ehrenbrink, B., and Jahn, B.M., 2001, Rheniumosmium isotope systematics and platinum group element concentrations: loess and the upper continental crust, Geochem. Geophys. Geosys. 2, 2001GC000172.
  69. Plank, T. and Langmuir, C.H., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol. 145, 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2
  70. Pueyo, M., Lopez-Sanchez, J.F., and Rauret, G., 2004, Assessment of $CaCl_2$, $NaNO_3$ and $NH_4NO_3$ extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils, Anal. Chim. Acta, 504(2), 217-226. https://doi.org/10.1016/j.aca.2003.10.047
  71. Qiao, M., Cai, C., Huang, Y., Liu, Y., Lin, A., Zheng, Y., 2011, Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China, Environ. Monit. Assess., 172(1-4), 353-365. https://doi.org/10.1007/s10661-010-1339-1
  72. Ramachandran, V., and D'Souza, S.F., 2013, Adsorption of nickel by Indian soil, J. Soil Sci. Plant Nutr., 13(1), 165-173.
  73. Rastmanesh, F., Moore, F., Keshavarzi, B., 2010, Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran, Bull. Environ. Contam. Toxicol., 85(5), 515-519. https://doi.org/10.1007/s00128-010-0149-z
  74. Ratuzny, T., Gong, Z., and Wilke, B.M., 2009, Total concentrations and speciation of heavy metals in soils of the Shenyang Zhangshi Irrigation Area, China, Environ. Monit. Assess., 156(1-4), 171-180. https://doi.org/10.1007/s10661-008-0473-5
  75. Ravichandran, M., Baskaran, M., Santschi, P.H., and Bianchi, T., 1995, History of trace metal pollution in Sabine-Neches Estuary, Beaumont, Texas, Environ. Sci. Technol., 29(6), 1495-1503. https://doi.org/10.1021/es00006a010
  76. RDA (Rural Development Administration), 2006, Background level of nickel in agricultural fields and estabilishment of criteria for soil contamination, Rural Development Administration, Rural Development Administration, Suwon.
  77. Rodriguez-Oroz, D., Lasheras, E., Elustondo, D., and Garrigo, J., 2017, Assessment of indexes for heavy metal contamination in remote areas: a case study in a Pyrenean Forest, Navarra, Spain, Bull. Environ. Contam. Toxicol., 98(1), 91-96. https://doi.org/10.1007/s00128-016-1972-7
  78. Ronov, A.B. and Yaroshevskiy, A.A., 1976, A new model for the chemical structure of the Earth's crust, Geochem. Int., 13(6), 89-121.
  79. Rubio, B., Nombela, M.A., and Vilas, F., 2000, Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution, Mar. Pollut. Bull., 40(11), 968-980. https://doi.org/10.1016/S0025-326X(00)00039-4
  80. Rudnick, R.L. and Gao, S., 2003, Composition of the continental crust, In: R.L. Rudnick(ed.), The Crust, Treatise on Geochemistry, vol. 3, p. 1-64.
  81. Ruiz, F., 2001, Trace metals in estuarine sediments from the southwestern Spanish coast, Mar. Pollut. Bull., 42(6), 481-490. https://doi.org/10.1016/S0025-326X(00)00192-2
  82. Sadhu, K., Adhikari, K., and Gangopadhyay, A., 2012, Assessment of heavy metal contamination of soils in and around open cast mines of Raniganj area, India, Int. J. Environ. Eng. Res., 1(2), 77-85.
  83. Saleem, M., Iqbal, J. and Shah, M.H., 2015, Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments - a case study from Mangla Lake, Pakistan, Environ. Nanotechnol. Monitor. Manag., 4, 27-36. https://doi.org/10.1016/j.enmm.2015.02.002
  84. Schwertmann, V.U., 1964, The differentiation of iron oxide in soils by a photochemical extraction with acid ammonium oxalate, Z. Pflanzenernahr. Dung. Bodenkunde, 105, 194-201. https://doi.org/10.1002/jpln.3591050303
  85. Seo, B.H., Lim, G.H., Kim, K.H., Kim, J.H., Hur, J.H., Kim, W.I. and Kim, K.R., 2013, Comparison of single extractions for evaluation of heavy metal phytoavailability in soil, Kor. J. Environ. Agri. 32(3), 171-178. https://doi.org/10.5338/KJEA.2013.32.3.171
  86. Seregin, I.V., and Kozhevnikova, A.D., 2006, Physiological role of nickel and its toxic effects on higher plants, Russ. J. Plant Physiol. 53, 257-277. https://doi.org/10.1134/S1021443706020178
  87. Shaw, D.M., Reilly, G.A., Muysson, J.R., Pattenden, G.E., and Campbell, F.E., 1967, An estimate of the chemical composition of the Canadian Precambrian shield, Can. J. Earth Sci. 4, 829-853. https://doi.org/10.1139/e67-058
  88. Shaw, D.M., Dostal, J., and Keays, R.R., 1976, Additional estimates of continental surface Precambrian shield compositon in Canada, Geochem. Cosmochim. Acta 40, 73-83. https://doi.org/10.1016/0016-7037(76)90195-2
  89. Sheppard, S., Long, J., Sanipelli, B., and Sohlenius, G., 2009, Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp, Svensk karnbranslehantering (SKB).
  90. Silveira, M.L., Alleoni, L.R.F., O'connor, G.A., and Chang, A.C., 2006, Heavy metal sequential extraction methods - a modification for tropical soils, Chemosphere, 64(11), 1929-1938. https://doi.org/10.1016/j.chemosphere.2006.01.018
  91. Sims, K.W.W., Newsom, H.E., and Gladney, E.S., 1990, Chemical fractionation during formation of the Earth's core and continental crust: clues from As, Sb, W, and M., In: H.E. Newsom, J.H. Jones, and J.H. Newson(eds.), Origin of the Earth, Oxford University Press, New York, p. 291-317.
  92. Sposito, G., Lund, L.J., and Chang, A.C., 1982, Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases, Soil Sci. Soc. Am. J., 46(2), 260-264. https://doi.org/10.2136/sssaj1982.03615995004600020009x
  93. Stoffers, P., Glasby, G.P., Wilson, C.J., Davis, K.R., and Walter, P., 1986, Heavy metal pollution in Wellington Harbour, New Zeal. J. Mar. Freshwat. Res., 20(3), 495-512. https://doi.org/10.1080/00288330.1986.9516169
  94. Su, D.C. and Wong, J.W.C., 2004, Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ashstabilized sewage sludge, Environ. Inter., 29(7), 895-900. https://doi.org/10.1016/S0160-4120(03)00052-7
  95. Sun, C.I., Kim, D.J., Lee, Y.W., and Kim, S.S., 2015, Pollution and ecological risk assessment of trace metals in surface sediments of the Ulsan-Onsan Coast, J. Kor. Soc. Mar. Environ. Energy, 18(4), 245-253. https://doi.org/10.7846/JKOSMEE.2015.18.4.245
  96. Sungur, A., Soylak, M., and Ozcan, H., 2014, Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability, Chem. Spec. Bioavailab., 26(4), 219-230. https://doi.org/10.3184/095422914X14147781158674
  97. Sutherland, R.A., Tolosa, C.A., Tack, F.M.G., Verloo, M.G., 2000, Characterization of selected element concentrations and enrichment ratios in background and anthropogenically impacted roadside areas, Arch. Environ. Contam. Toxicol., 38, 428-438. https://doi.org/10.1007/s002449910057
  98. Taiwo, A.M., Harrison, R.M., and Shi, Z., 2014, A review of receptor modeling of industrially emitted particulate matter, Atmos. Environ., 97, 109-120. https://doi.org/10.1016/j.atmosenv.2014.07.051
  99. Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution, Blackwell Scientific Publications, Oxford, 312 p.
  100. Taylor, S.R. and McLennan, S.M., 1995, The geochemical evolution of the continental crust, Rev. Geophys. 33, 241-265. https://doi.org/10.1029/95RG00262
  101. Tepanosyan, G., Sahakyan, L., Belyaeva, O., Maghakyan, N., and Saghatelyan, A., 2017, Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia, Chemosphere, 184, 1230-1240. https://doi.org/10.1016/j.chemosphere.2017.06.108
  102. Tessier, A., Campbell, P.G., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Analyt. Chem., 51(7), 844-851. https://doi.org/10.1021/ac50043a017
  103. Tokalioglu, S., Yilmaz, V., and Kartel, S., 2010, An assessment of metal sources by multivariate analysis and speciation of metals in soil samples using the BCR sequential extraction procedure, Soil Air Water, 38(8), 713-718. https://doi.org/10.1002/clen.201000025
  104. Tuzen, M., Sesli, E., and Soylak, M., 2007, Trace element levels of mushroom species from East Black Sea region of Turkey, Food Control, 18(7), 806-810. https://doi.org/10.1016/j.foodcont.2006.04.003
  105. Ure, A.M., Quevauviller, Ph., Muntau, H., and Griepink, B., 1992, B. EUR report. CEC Brussels, 14763, 1992:85.
  106. Wali, A., Colinet, G., and Ksibi, M., 2014, Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in Sfax, Tunisia, Environ. Res. Eng. Manag., 4(70), 14-26.
  107. Walkley, A. and Black, I.A., 1934, An examination of degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003
  108. Wang, X., Sato, T., Xing, B., Tao, S., 2005, Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish, Sci. Total Environ., 350(1-3), 28-37. https://doi.org/10.1016/j.scitotenv.2004.09.044
  109. Wedepohl, H., 1995, The composition of the continental crust, Geochim. Cosmochim. Acta 59, 1217-1239. https://doi.org/10.1016/0016-7037(95)00038-2
  110. Wiseman, C.L., Zereini, F., and Puttmann, W., 2015, Metal and metalloid accumulation in cultivated urban soils: a medium-term study of trends in Toronto, Canada, Sci. Tot. Environ., 538, 564-572. https://doi.org/10.1016/j.scitotenv.2015.08.085
  111. Wuana, R.A., and Okieimen, F.E., 2011, Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecol., 2011.
  112. Xu, Y., Sun, Q., Yi, L., Yin, X., Wang, A., Li, Y., and Chen, J., 2014, The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River Estuary (SE China): implications for historical pollution, Sci. Total Environ., 493, 729-736. https://doi.org/10.1016/j.scitotenv.2014.06.046
  113. Ye, C., Li, S., Zhang, Y., and Zhang, Q., 2011, Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Tree Gorges Reservoir, China, J. Hazard. Mater., 191(1-3), 366-372. https://doi.org/10.1016/j.jhazmat.2011.04.090
  114. Yu, S., and Li, X.D., 2011, Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: implications for assessing the risk to human health, Environ. Pollut. 159(5), 1317-1326. https://doi.org/10.1016/j.envpol.2011.01.013
  115. Yu, X., Yan, Y., and Wang, W.X., 2010, The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China, Mar. Pollut. Bull., 60(8), 1364-1371. https://doi.org/10.1016/j.marpolbul.2010.05.012
  116. Zhang, C., 2006, Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland, Environ. Pollut., 142(3), 501-511. https://doi.org/10.1016/j.envpol.2005.10.028
  117. Zhang, J., and Liu, C.L., 2002, Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes, Estuar. Coast. Shelf Sci., 54(6), 1051-1070. https://doi.org/10.1006/ecss.2001.0879
  118. Zhang, X.Y., Lin, F.F., Wong, M.T., Feng, X.L., and Wang, K., 2009, Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang Contry, China, Environ. Monit. Assess., 154(1-4), 439. https://doi.org/10.1007/s10661-008-0410-7
  119. Zhao, L., Xu, Y., Hou, H., Shangguan, Y., and Li, F., 2014, Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China, Sci. Tot. Environ., 468, 654-662.
  120. Zhou, J., Feng, K., Pei, Z., Meng, F., and Sun, J., 2016, Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area, Eastern China. Ecotoxicol., 25(2), 380-388. https://doi.org/10.1007/s10646-015-1596-4
  121. Zimmerman, A.J., and Weindorf, D.C., 2010, Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures, Int. J. Analyt. Chem., 2010.