References
- Jie Hu, Li Shen, Gang Sun, "Squeeze-and-Excitation Networks", arxiv:1709.01507, 2017.
- https://blog.paralleldots.com/data-science/must-read-path-breaking-papers-about-image-classification/
- Kaiming He, "Mask R-CNN: A Perspective on Equivariance, ICCV 2017 Tutorial", Venice, Italy, 2017.
- Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick, "Mask R-CNN", arXiv:1703.06870v3 [cs.CV], 2018.
- Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, "Generative Adversarial Networks", arXiv:1406.2661, 2016.
- Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, "Image-to-Image Translation with Conditional Adversarial Networks", arXiv:1611.07004, 2017.
- Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", arXiv:1703.10593, 2017.
- Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network", arXiv:1609.04802, 2017.
- Bingzhe Wu, Haodong Duan, Zhichao Liu, Guangyu Sun, "SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution", arXiv:1712.05927, 2017.
- David Gunning, "Explainable Artificial Intelligence (XAI)", https://www.darpa.mil/program/explainable-artificial-intelligence, DARPA Program, 2016.
- Wojciech Samek, Thomas Wiegand, Klaus-Robert Muller, "EXPLAINABLE ARTIFICIAL INTELLIGENCE: UNDERSTANDING, VISUALIZING AND INTERPRETING DEEP LEARNING MODELS", arXiv:1708.08296, 2017.
- Jaegul Choo, Shixia Liu, "Visual Analytics for Explainable Deep Learning", arXiv:1804.02527, 2018.