DOI QR코드

DOI QR Code

DSSAT 작물모형을 위한 수미품종의 품종모수의 결정과 기후변화에서의 활용

Estimation and validation of the genetic coefficient of cv. Superior for the DSSAT-CSM

  • 백계령 (국립식량과학원 고령지농업연구소) ;
  • 이계준 (국립식량과학원 고령지농업연구소) ;
  • 이은경 (국립식량과학원 고령지농업연구소)
  • 투고 : 2018.03.26
  • 심사 : 2018.06.22
  • 발행 : 2018.06.30

초록

감자는 전 세계적으로 생산량이 쌀, 벼, 옥수수 다음으로 널리 재배되고 있는 식량 작물이며 생육 중에 수분스트레스를 받을 경우 수량에 크게 영향을 받는다. 기후변화에 의한 감자수량의 변화를 정확하게 예측하는 것은 식량안보를 위해 매우 중요하다. 기후변화 등에 의한 환경에 따른 작물생산량 예측을 위해 전세계적으로 많은 연구자들이 작물모형프로그램을 이용해서 다양한 작물에 대해 연구를 수행하고 있다. 미국에서 개발된 DSSAT 프로그램도 그 중 하나로 다양한 작물에 대한 여러 모델들을 하나의 프로그램으로 통합한 일종의 패키지이며 27종의 작물에 대해 연구할 수 있다. 이 연구에서는 RCP 8.5 기후조건에서 2050년대와 2090년대의 국내 5개 지역의 감자 생산량을 모의하였다. 국내에서 가장 흔하게 재배되고 있는 감자품종인 수미에 대한 품종모수가 DSSAT프로그램에 내재되어 있지 않기 때문에 2016-2017년 실제 생육조사를 통해 얻은 자료로 하부모듈인 GenClac 프로그램에서 수미품종의 품종모수를 추측하였으며, 총 5개 지역 39개의 지역적응시험 성적자료를 이용하여 추측된 품종모수를 검증하였다. 검증된 품종모수로 RCP 8.5기후 시나리오조건에서 수미품종의 생산량예측을 수행한 결과 2010년대와 비교하여 2050년대에는 5개 지역 총 생산량이 26% 증가한 반면 2090년대에는 17% 감소하였다. 그러므로 기후변화에 대비하여 안정적인 감자 생산을 위해서는 고온에서의 재배와 관수와 관련된 연구가 중요할 것으로 생각된다.

Potato(Solanum tuberosum L.) is one of the major food crop in the world following rice, wheat, and maize. It is thus important to project yield predict of potato under climate change conditions for assessment of food security. A crop growth modelling is widely used to simulate crop growth condition and total yield of various crops under a given climate condition. The decision support system for agrotechnology transfer (DSSAT) cropping system model, which was developed by U.S. which package integrating several models of 27 different crops, have been used to project crop yield for the impact assessment of climate change on crop production. In this study, we simulated potato yield using RCP 8.5 climate change scenario data, as inputs to the DSSAT model in five regions of Korea. The genetic coefficients of potato cultivar for 'superior', which is one of the most widely cultivated potato variety in Korea were determined. The GenCalc program, which is a submodule of the DSSAT package, was used to determine the genetic coefficients for the superior cultivar. The values of genetic coefficients were validated using results of 39 experiments performed over seven years in five regions. As a case study, the potato yield was projected that total yields of potato across five regions would increase by 26% in 2050s but decrease by 17% in 2090s, compared with 2010s. These results suggested that the needs for cultivation and irrigation technologies would be considerably large for planning and implementation of climate change adaptation for potato production in Korea.

키워드

참고문헌

  1. Adam M., L. G. J. Van Bussel, P. A. Leffelaar, H. Van Keulen, and F. Ewert, 2011: Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions. Ecological Modelling 222(1), 131-143. https://doi.org/10.1016/j.ecolmodel.2010.09.001
  2. Choi S.-J., A.-S. Lee, S.-J. Jeon, K.-D. Kim, M.-C. Seo, W.-S. Jung, J.-H. Maeng, and I.-J. Kim, 2014: Estimating the yield of potato non-mulched using climate elements. Korean Journal of Crop Science 59(1), 89-96. (in Korean with English abstract) https://doi.org/10.7740/kjcs.2014.59.1.089
  3. Cho Y.-S., H.-G. Park, W.-H. Kim, S.-D. Kim, J.-H. Seo, and J.-C. Shin, 2006: Growth and yield related characteristics of soybeans for the estimation of grain yield in upland and drained-paddy field. Korean Journal of Crop Science 51(7), 599-607. (in Korean with English abstract)
  4. Daccache, A., E. K. Weatherhead, M. A. Stalham, and J. W. Knox, 2011: Impacts of climate change on irrigated potato production in a humid climate. Agricultural and Forest Meteorology 151(12), 1641-1653. https://doi.org/10.1016/j.agrformet.2011.06.018
  5. Fleisher, D. H., J. Barnaby, R. Sicher, J. P. Resop, D. J. Timlin, and V. R. Reddy, 2013: Effects of elevated $CO_2$ and cyclic drought on potato under varying radiation regimes. Agricultural and Forest Meteorology 171-172, 270-280. https://doi.org/10.1016/j.agrformet.2012.12.011
  6. Holden, N. M., A. J. Brereton, R. Fealy, and J. Sweeney, 2003: Possible change in Irish climate and its impact on barley and potato yield. Agricultural and Forest Meteorology 116(3-4), 181-196. https://doi.org/10.1016/S0168-1923(03)00002-9
  7. Fandika, I. R., P. D. Kemp, J. P. Millner, D. Horne, and N. Roskruge, 2016: Irrigation and nitrogen effects on tuber yield and water use efficiency of heritage and modern potato cultivars. Agricultural Water Management 170, 148-157. https://doi.org/10.1016/j.agwat.2015.10.027
  8. IPCC (Intergovernmental Panel on Climate Change), 2011: IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation
  9. Jones, J. W., J. M. Antle, B. Basso, K. J. Boote, R. T. Conant, I. Foster, H. Charles, J. Godfray, M. Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. Munoz-Carpena, C. H. Porter, C. Rosenzweig, and T. R. Wheeler, 2016: Brief history of agricultural systems modeling. Agricultural Systems 155, 240-254.
  10. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European Journal of Agronomy 18(3-4), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  11. Kim, D.-J., S.-O. Kim, K.-H. Moon, and J. I. Yun, 2012: An outlook on cereal grains production in South Korea based on crop growth simulation under the RCP 8.5 climate condition. Korean Journal of Agricultural and Forest Meteorology 14(3), 132-141. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.3.132
  12. Kim, H. J., G. Y. Shin, H. M. Cho, G. S. Kim, S. Y. Kim, C. S. Park, and Y. I. Ham, 1999: The series of potato. Highland Agriculture Research Institute.
  13. KEI (Korea Environment Institute), 2009: Economic Analysis of Climate Change in Korea.
  14. KMA (Korea Meteorological Administration), 2012: The prospect report of the Korean Peninsula climate change.
  15. KREI (Korea Rural Economic Institute), 2015: The trends of potato supply and demand and their implication. FTA Issue Report 11.
  16. Lee, A.-S., S.-J. Choi, S.-J. Jeon, J.-H. Maeng, J.-H. Kim, and I.-J. Kim, 2016: Estimating the yield of marketable potato of mulch culture using climate elements. Korean Journal of Crop Science 61(1), 70-77. (in Korean with English abstract) https://doi.org/10.7740/kjcs.2016.61.1.070
  17. Lee, C. K., J. W. Kim, J. Y. Shon, W. H. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim, 2012: Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4), 207-221. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2012.14.4.207
  18. Raymundo, R., S. Asseng, D. Cammarano, and R. Quiroz, 2014: Potato, sweet potato, and yam models for climate change: A review. Field Crops Research 166, 173-185. https://doi.org/10.1016/j.fcr.2014.06.017
  19. Raymundo, R., S. Asseng, R. Prassad, U. Kleinwechter, J. Concha, B. Condori, W. Bowen, J. Wolf, J. E. Olesen, Q. Dong, L. Zotarelli, M. Gastelo, A. Alva, M. Travasso, R. Quiroz, V. Arora, W. Graham, and C. Porter, 2017: Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research 202, 57-76. https://doi.org/10.1016/j.fcr.2016.04.012
  20. Roberto, C., F. Orando, L. Paleari, T. Stella, C. Gilardelli, E. Movedi, V. Pagani, G. Cappelli, A. Vertemara, L. Alberti, P. Alberti, S. Atanassiu, M. Bonaiti, G. Cappelletti, M. Ceruti, A. Confalonieri, G. Corgatelli, P. Corti, and M. Acutis, 2016: Uncertainty in crop model predictions: What is the role of users? Environmental Modelling & Software 81, 165-173. https://doi.org/10.1016/j.envsoft.2016.04.009
  21. Song, Y., C.-H. Lim, W.-K. Lee, K.-C. Eom, S.-E Choi, E. J. Lee, and E. Kim, 2014: Applicability analysis of major crop models on Korea for the adaptation to climate change. Journal of Climate Change Research 5(2), 109-125. (in Korean with English abstract)
  22. Stastna, M., F. Toman, and J. Dufkova, 2010: Usage of SUBSTOR model in potato yield prediction. Agricultural Water Management 97(2), 286-290. https://doi.org/10.1016/j.agwat.2009.09.015