DOI QR코드

DOI QR Code

Siamese Crocodile White Blood Cell Extract Inhibits Cell Proliferation and Promotes Autophagy in Multiple Cancer Cell Lines

  • Phosri, Santi (Office of Education, Faculty of Engineering, Burapha University) ;
  • Jangpromma, Nisachon (Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University) ;
  • Chang, Leng Chee (Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii at Hilo) ;
  • Tan, Ghee T. (Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii at Hilo) ;
  • Wongwiwatthananukit, Supakit (Department of Pharmacy Practice, College of Pharmacy, University of Hawaii at Hilo) ;
  • Maijaroen, Surachai (Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University) ;
  • Anwised, Preeyanan (Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University) ;
  • Payoungkiattikun, Wisarut (Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University) ;
  • Klaynongsruang, Sompong (Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University)
  • Received : 2017.12.03
  • Accepted : 2018.03.31
  • Published : 2018.06.28

Abstract

Cancer represents one of the most significant threats to human health on a global scale. Hence, the development of effective cancer prevention strategies, as well as the discovery of novel therapeutic agents against cancer, is urgently required. In light of this challenge, this research aimed to evaluate the effects of several potent bioactive peptides and proteins contained in crocodile white blood cell extract (cWBC) against LU-1, LNCaP, PC-3, MCF-7, and CaCo-2 cancer cell lines. The results demonstrate that 25, 50, 100, and $200{\mu}g/ml$ cWBC exhibits a strong cytotoxic effect against all investigated cell lines ($IC_{50}$ $70.34-101.0{\mu}g/ml$), while showing no signs of cytotoxicity towards noncancerous Vero and HaCaT cells. Specifically, cWBC treatment caused a significant reduction in the cancerous cells' colony forming ability. A remarkable suppression of cancerous cell migration was observed after treatment with cWBC, indicating potent antimetastatic properties. The mechanism involved in the cancer cell cytotoxicity of cWBC may be related to apoptosis induction, as evidenced by typical apoptotic morphology features. Moreover, certain cWBC concentrations induced significant overproduction of ROS and significantly inhibited the $S-G_2/M$ transition in the cancer cell. The molecular mechanisms of cWBC in apoptosis induction were to decrease Bcl-2 and XIAP expression levels and increase the expression levels of caspase-3, caspase-8, and p53. These led to a decrease in the expression level of the cell cycle-associated gene cyclin-B1 and the arrest of cell population growth. Consequently, these findings demonstrate the prospect of the use of cWBC for cancer therapy.

Keywords

References

  1. Shrestha LB. 2000. Population aging in developing countries. Health Aff. (Millwood) 19: 204-212. https://doi.org/10.1377/hlthaff.19.3.204
  2. Yach D, Hawkes C, Gould CL, Hofman KJ. 2004. The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA. 291: 2616-2622. https://doi.org/10.1001/jama.291.21.2616
  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136: E359-E386. https://doi.org/10.1002/ijc.29210
  4. Chen R, Ren S, Yiu MK, Fai NC, Cheng WS, Ian LH, et al. 2014. Prostate cancer in Asia: a collaborative report. Asian J. Urol. 1: 15-29. https://doi.org/10.1016/j.ajur.2014.08.007
  5. Hsu SC, Kuo CL, Lin JP, Lee JH, Lin CC, Su CC, et al. 2007. Crude extracts of Euchresta formosana radix inhibit invasion and migration of human hepatocellular carcinoma cells. Anticancer Res. 27: 2377-2384.
  6. Wijesinghe WAJP, Jeon YJ, Ramasamy P, Wahid MEA, Vairappan CS. 2013. Anticancer activity and mediation of apoptosis in human HL-60 leukaemia cells by edible sea cucumber (Holothuria edulis) extract. Food Chem. 139: 326-331. https://doi.org/10.1016/j.foodchem.2013.01.058
  7. Pandey S, Walpole C, Cabot P, JS haw P N, Batra J, Hewavitharana AK. 2017. Selective anti-proliferative activities of Carica papaya leaf juice extracts against prostate cancer. Biomed. Pharmacother. 89: 515-523. https://doi.org/10.1016/j.biopha.2017.02.050
  8. Lee JH, Kim IW, Kim SH, Kim MA, Yun EY, Nam SH, et al. 2015. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25: 1275-1280. https://doi.org/10.4014/jmb.1503.03091
  9. Patathananone S, Thammasirirak S, Daduang J, Chung J, Temsiripong Y, Daduang S. 2016. Inhibition of HeLa cells metastasis by bioactive compounds in crocodile (Crocodylus siamensis) white blood cells extract. Environ. Toxicol. 31: 1329-1336. https://doi.org/10.1002/tox.22138
  10. Gaspar D, Veiga AS, Castanho MA. 2013. From antimicrobial to anticancer peptides. a review. Front. Microbiol. 4: 294.
  11. Hoskin DW, Ramamoorthy A. 2008 Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778: 357-375. https://doi.org/10.1016/j.bbamem.2007.11.008
  12. Riedl S, Zweytick D, Lohner K. 2011. Membrane-active host defense peptides - challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids 164: 766-781. https://doi.org/10.1016/j.chemphyslip.2011.09.004
  13. Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. 2013. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 23: 1091-1105. https://doi.org/10.1038/cr.2013.104
  14. Preecharram S, Daduang S, Bunyatratchata W, Araki T, Thammasirirak S. 2008. Antibacterial activity from siamese crocodile (Crocodylus siamensis) serum. Afr. J. Biotechnol. 7: 3121-3128.
  15. Jeyamogan S, Khan NA, Siddiqui R. 2017. Animals living in polluted environments are a potential source of anti-tumor molecule(s). Cancer Chemother. Pharmacol. 80: 919-924. https://doi.org/10.1007/s00280-017-3410-x
  16. Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T, et al. 2011. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Dev. Comp. Immunol. 35: 545-553. https://doi.org/10.1016/j.dci.2010.12.011
  17. Kommanee J, Preecharram S, Daduang S, Temsiripong Y, Dhiravisit A, Yamada Y, et al. 2012. Antibacterial activity of plasma from crocodile (Crocodylus siamensis) against pathogenic bacteria. Ann. Clin. Microbiol. Antimicrob. 11: 22. https://doi.org/10.1186/1476-0711-11-22
  18. Yaraksa N, Anunthawan T, Theansungnoen T, Daduang S, Araki T, Dhiravisit A, et al. 2014. Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. J. Antibiot. (Tokyo) 67: 205-212. https://doi.org/10.1038/ja.2013.114
  19. Phosri S, Mahakunakorn P, Lueangsakulthai J, Jangpromma N, Swatsitang P, Daduang S, et al. 2014. An investigation of antioxidant and anti-inflammatory activities from blood components of crocodile (Crocodylus siamensis). Protein J. 33: 484-492. https://doi.org/10.1007/s10930-014-9581-y
  20. Theansungnoen T, Yaraksa N, Daduang S, Dhiravisit A, Thammasirirak S. 2014. Purification and characterization of antioxidant peptides from leukocyte extract of Crocodylus siamensis. Protein J. 33: 24-31. https://doi.org/10.1007/s10930-013-9536-8
  21. Phosri S, Jangpromma N, Patramanon R, Kongyingyoes B , Mahakunakorn P, Klaynongsruang S. 2017. Protective effect of crocodile hemoglobin and whole blood against hydrogen peroxide-induced oxidative damage in human lung fibroblasts (MRC-5) and inflammation in mice. Inflammation. 40: 205-220. https://doi.org/10.1007/s10753-016-0471-7
  22. Jangpromma N, Preecharram S, Srilert T, Maijaroen S, Mahakunakorn P, Nualkaew N, et al. 2016. In vitro and in vivo wound healing properties of plasma and serum from Crocodylus siamensis blood. J. Microbiol. Biotechnol. 26: 1140-1147. https://doi.org/10.4014/jmb.1601.01054
  23. Risso A. 2000. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J. Leukoc. Biol. 68: 785-792.
  24. Mehta RG, Pezzuto JM. 2002. Discovery of cancer preventive agents from natural products: from plants to prevention. Curr. Oncol. Rep. 4: 478-486. https://doi.org/10.1007/s11912-002-0059-2
  25. Chen J, Zhou M, Zhang Q, Xu J, Ouyang J. 2015. Anticancer effect and apoptosis induction of gambogic acid in human leukemia cell line K562 in vitro. Med. Sci. Monit. 21: 1604-1610. https://doi.org/10.12659/MSM.893004
  26. Liang CC, P ark AY, Guan JL. 2007. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2: 329-333. https://doi.org/10.1038/nprot.2007.30
  27. Liu E, Du X, Ge R, Liang T, Niu Q, Li Q. 2013. Comparative toxicity and apoptosis induced by diorganotins in rat pheochromocytoma (PC12) cells. Food Chem. Toxicol. 60: 302-308. https://doi.org/10.1016/j.fct.2013.07.072
  28. Livak KL, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  29. Hacker G. 2000. The morphology of apoptosis. Cell Tissue Res. 301: 5-17. https://doi.org/10.1007/s004410000193
  30. Ameziane El Hassani R, Dupuy C. 2013. Detection of intracellular reactive oxygen species (CM-H2DCFDA). Bio Protoc. 3: e313.
  31. Bray F, Ren JS, Masuyer E, Ferlay J. 2013. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer 132: 1133-1145. https://doi.org/10.1002/ijc.27711
  32. Woo CC, Loo SY, Gee V, Yap CW, Sethi G, Kumar AP, et al. 2011. Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-${\gamma}$ pathway. Biochem. Pharmacol. 82: 464-475. https://doi.org/10.1016/j.bcp.2011.05.030
  33. Anunthawan T, de la Fuente-Nunez C, Hancock REW, Klaynongsruang S. 2015. Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim. Biophys. Acta 1848: 1352-1358. https://doi.org/10.1016/j.bbamem.2015.02.021
  34. Barksdale SM, Hrifko EJ, van Hoek ML. 2017. Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Dev. Comp. Immunol. 70: 135-144. https://doi.org/10.1016/j.dci.2017.01.011
  35. Hao J, Li Y-W, Xie M-Q, Li A-X. 2012. Molecular cloning, recombinant expression and antibacterial activity analysis of hepcidin from Simensis crocodile (Crocodylus siamensis). Comp. Biochem. Physiol. 163: 309-315. https://doi.org/10.1016/j.cbpb.2012.08.002
  36. Iwasaki T, Ishibashi J, Tanaka H, Sato M, Asaoka A, Taylor D, et al. 2009. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30: 660-668. https://doi.org/10.1016/j.peptides.2008.12.019
  37. Brandenburg LO, Merres J, Albrecht LJ, Varoga D, Pufe T. 2012. Antimicrobial peptides: multifunctional drugs for different applications. Polymers 4: 539-560. https://doi.org/10.3390/polym4010539
  38. Arouri A, Dathe M, Blume A. 2009. Peptide induced demixing in PG/PE lipid mixtures: a mechanism for the specificity of antimicrobial peptides towards bacterial membranes? Biochim. Biophys. Acta 1788: 650-659. https://doi.org/10.1016/j.bbamem.2008.11.022
  39. Patathananone S, Thammasirirak S, Daduang J, Chung JG, Temsiripong Y, Daduang S. 2016. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in HeLa cells. Environ. Toxicol. 31: 986-997. https://doi.org/10.1002/tox.22108
  40. Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. 2012. The use of therapeutic peptides to target and to kill cancer cells. Curr. Med. Chem. 19: 3794-3804. https://doi.org/10.2174/092986712801661004
  41. Dia VP, Krishnan HB. 2016. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci. Rep. 15: 33532.
  42. Xiao JX, Huang GQ, Zhu CP, Ren DD, Zhang SH. 2007. Morphological study on apoptosis Hela cells induced by soyasaponins. Toxicol. In Vitro 21: 820-826. https://doi.org/10.1016/j.tiv.2007.01.025
  43. Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN. 2013. In vitro morphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evid. Based Complement. Alternat. Med. 2013: 257108.
  44. Saraste A, Pulkki K. 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45: 528-537. https://doi.org/10.1016/S0008-6363(99)00384-3
  45. Zhang L, Zheng Y, Deng H, Liang L, Peng J. 2014. Aloperine induces G2/M phase cell cycle arrest and apoptosis in HCT116 human colon cancer cells. Int. J. Mol. Med. 33: 1613-1620. https://doi.org/10.3892/ijmm.2014.1718
  46. Borhani N, Manoochehri M, Gargari SS, Novin MG, Mansouri A, Omrani MD. 2014. Decreased expression of proapoptotic genes Caspase-8- and BCL2-associated agonist of cell death (BAD) in ovarian cancer. Clin. Ovarian Other Gynecol. Cancer 7: 18-23. https://doi.org/10.1016/j.cogc.2014.12.004
  47. Nita M, Grzybowski A. 2016. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016: 3164734.
  48. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, Lleonart ME. 2013. Oxidative stress and cancer: an overview. Ageing Res. Rev. 12: 376-390. https://doi.org/10.1016/j.arr.2012.10.004
  49. Umayaparvathi S, Meenakshi S, Vimalraj V, Arumugam M, Sivagami G, Balasubramanian T. 2014. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed. Prev. Nutr. 4: 343-353. https://doi.org/10.1016/j.bionut.2014.04.006
  50. Pelicano H, Carney D, Huang P. 2004. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7: 97-110. https://doi.org/10.1016/j.drup.2004.01.004
  51. Xuan H, Li Z, Yan H, Sang Q, Wang K, He Q, et al. 2014. Antitumor activity of Chinese propolis in human breast cancer MCF-7 and MDA-MB-231 cells. Evid. Based Complement. Alternat. Med. 2014: 280120.
  52. Collins K, Jacks T, Pavletich NP. 1997. The cell cycle and cancer. Proc. Natl. Acad. Sci. USA 94: 2776-2778. https://doi.org/10.1073/pnas.94.7.2776
  53. Singh A, Fatima K, Singh A, Behl A, Mintoo MJ, Hasanain M, et al. 2015. Anticancer activity and toxicity profiles of 2-benzylidene indanone lead molecule. Eur. J. Pharm. Sci. 76: 57-67. https://doi.org/10.1016/j.ejps.2015.04.020
  54. Yong WK, Ho YF, Malek SN. 2015. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn. Mag. 11: S275-S283. https://doi.org/10.4103/0973-1296.166069
  55. Flatt PM, Pietenpol JA. 2000. Mechanisms of cell-cycle checkpoints: at the crossroads of carcinogenesis and drug discovery. Drug Metab. Rev. 32: 283-305. https://doi.org/10.1081/DMR-100102335
  56. Mancinelli L, De Angelis PM, Annulli L, Padovini V, Elgjo K, Gianfranceschi GL. 2009. A class of DNA-binding peptides from wheat bud causes growth inhibition, G2 cell cycle arrest and apoptosis induction in HeLa cells. Mol. Cancer 8: 55.

Cited by

  1. Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest vol.30, pp.2, 2020, https://doi.org/10.4014/jmb.1909.09059
  2. Potential of crocodile blood as a medication and dietary supplement: A systemic review vol.48, pp.8, 2018, https://doi.org/10.1111/1440-1681.13524
  3. Crocodile blood supplementation protects vascular function in diabetic mice vol.3, pp.1, 2018, https://doi.org/10.1186/s43014-021-00066-w