DOI QR코드

DOI QR Code

카자흐스탄 듀셈바이지역의 퇴적분기형 연-아연 광화작용에 대한 잠재력 연구

Potential Study for the Sedimentary Exhalative Pb-Zn Mineralization in Dyusembay Area, Kazakhstan

  • 노상건 (한국지질자원연구원 자원탐사개발연구센터) ;
  • 이승한 (부경대학교 지구환경과학과) ;
  • 박기웅 (부경대학교 지구환경과학과) ;
  • 정현국 (한국광물자원공사 탐사지원처 금속탐사팀) ;
  • 윤지성 (한국광물자원공사 탐사지원처 금속탐사팀) ;
  • 김선옥 (부경대학교 지구환경과학과) ;
  • 박맹언 (부경대학교 지구환경과학과)
  • No, Sang-gun (Korea Institute of Geoscience and Mineral Resoures) ;
  • Lee, Seung-han (Department of Earth and Environmental Sciences, Pukyong National University) ;
  • Park, Ki-woong (Department of Earth and Environmental Sciences, Pukyong National University) ;
  • Jeong, Hyeon-guk (Korea Resources Corporation) ;
  • Yun, Ji-seong (Korea Resources Corporation) ;
  • Kim, Sun-ok (Department of Earth and Environmental Sciences, Pukyong National University) ;
  • Park, Maeng-eon (Department of Earth and Environmental Sciences, Pukyong National University)
  • 투고 : 2018.03.19
  • 심사 : 2018.06.18
  • 발행 : 2018.06.28

초록

카자흐스탄 듀셈바이지역에서 변성퇴적암을 모암으로 발달한 연-아연 광화대가 확인되었다. 이 광화대에서 채취된 암추시료의 암석학적 특징, 변질지수(Alteration Index) 및 광석의 산화-환원 민감도(Redox-sensitive)를 퇴적분기형(SEDEX-type) 광상과 대비하였다. 광화작용은 습곡과 단층에 의해 규제되며 주로 흑연질천매암의 엽리를 따라 발달한다. 주요 광석광물은 황철석, 자류철석, 섬아연석 및 방연석이며, 세립질 석영과 함께 산점상 또는 층상으로 발달되어 있다. 광화대의 연변부는 전반적으로 견운모 및 녹니석을 수반하는 광역변성작용의 특징을 보인다. 모암을 관입한 마츄빈 화강암류 인근에서 열수작용에 의한 각력화와 망상의 석영-방해석 맥에 수반되는 연-아연 광화작용이 확인된다. 광화작용은 광석광물의 산출형태, 공생광물, 화학조성 및 동위원소 특성에 의해 세 가지 유형으로 구분된다. 광화 제1유형은 엽층리가 잘 발달된 모암 내에 미립의 황철석, 자황철석 및 섬아연석이 엽층리에 평행하게 단속적으로 배태되는 특징을 가지며, 지구화학적 분석결과 퇴적분기형 광화작용의 초기 단계 특징과 유사하다. 광화 제2유형은 광역변성작용에 의해 모암에 형성된 엽리에 평행하게 광석광물이 농집되어 나타나며, 석영 및 백운모(${\pm}$ 흑운모)와 공생하는 특징을 보인다. 광화 제3유형은 열수각력대 내에 발달하며, 모암의 엽리면과 각력 사이의 열극에 규제되어 층상, 망상 및 세맥상의 형태로 발달하는 특징을 가진다. 듀셈바이 연-아연 광화대의 모암은 유사한 변성정도를 나타내고, 명확한 변질대의 분대 현상이 관찰되지 않는다. 또한 광화 제1유형, 제2유형 및 제3유형 모두 유사한 희토류원소(REEs) 패턴을 나타내므로 동일한 기원에 의해 형성된 것으로 해석된다. 광화대에서 산출되는 황화광물은 제한된 범위의 황 동위원소 값(제2유형: ${\delta}^{34}S=-13.3{\sim}-11.7$‰, 제3유형: ${\delta}^{34}S=-13.9{\sim}-8.2$‰)을 가지며, 동위원소 지질온도계 적용 결과, 제2유형($T=251{\pm}38^{\circ}C{\sim}277{\pm}40^{\circ}C$)과 제3유형($T=360{\pm}2^{\circ}C$, $537{\pm}29^{\circ}C$)이 각각 다른 온도 범위로 나타났다. 이는 각각 모암의 변성작용과 마츄빈 화강암류의 관입에 의한 영향을 반영하는 것으로 추정된다. Th-Zr-Sc을 이용한 퇴적환경 분석 및 V/Mo 값을 이용한 산화-환원 민감도 검토 결과, 열수퇴적물은 침전 후 환원환경을 겪었으며 이후 변성작용과 화성암체의 관입에 의한 영향을 받은 것을 지시한다. 또한, 주성분을 이용한 SEDEX 지수를 산출하여 퇴적분기형 광상 판별도에 도시해본 결과 원지성 광화대에 대비된다. 따라서 듀셈바이 연-아연 광화대는 퇴적암을 모암으로 발달하는 층상 퇴적분기형 광상의 원지성 광화대에 해당하는 것으로 판단된다.

Metasediment-hosted Pb-Zn mineralized zone has been found in Dyusembay of Kazakhstan. Its petrological properties, metal index, alteration index and redox-sensitivity are compared with those of SEDEX type deposit. Mineralization is developed along foliation of host rock (graphitic phyllite) and controlled by folds and faults; major ore minerals including pyrite, pyrrhotite, sphalerite, and galena are disseminated or interlayered with fine-grained quartz. The margin of the mineralized zone is metamorphosed accompanying sericite and chlorite. Hydrothermal brecciation and Pb-Zn mineralization formed in quartz-calcite stockworks are confirmed at the around of Maytyubin granitoid intrusions. The mineralization is classified into three types according to those of occurrence, paragenesis, chemical composition and isotopic characteristics. Type 1 whose fine-grained pyrite, pyrrhotite and sphalerite are formed in parallel yet discontinuous to well-developed foliations of the host rock; its geochemistry is similar to those of the earlier stage in SEDEX-type mineralization. In case of type 2, the ore minerals of which are concentrated being parallel to a foliation by regional metamorphism, and most of them associated with quartz and muscovite (${\pm}$ biotite) paragenetically. Type 3 is formed in the hydrothermal breccia zone whose ore minerals are controlled by foliation and breccia and developed in quartz ${\pm}$ calcite veins having a form such as stratification, stockwork or veinlets. Host rocks in the mineralized zone indicate homogeneous metamorphic grade and there is no specific alteration zonation. Also, all types (type 1, type 2, and type 3) represent similar REEs patterns, it can be interpreted that these are originated from a same source. Sulphides occurred in mineralized zone indicate a limited range of sulphur isotope values (type 2, ${\delta}^{34}S=-13.3{\sim}-11.7$‰; type 3, ${\delta}^{34}S=-13.9{\sim}-8.2$‰), and a result of geothermometry presents different temperature ranges: type 2($251{\pm}38^{\circ}C{\sim}277{\pm}40^{\circ}C$); type 3($360{\pm}2^{\circ}C$ to $537{\pm}29^{\circ}C$). It is estimated to be due to the effect of metamorphism and Maytyubin granitoid intrusions, respectively. In addition, ternary chart of thorium, scandium, and zircon for discrimination of tectonic setting and redox sensitivity using V/Mo values indicate that hydrothermal sediments put on reduction environment after precipitation, before being affected by metamorphism and intrusion activity. Geochemical data are plotted on a distal trend of SEDEX-type with discrimination plot using SEDEX index. As a result, petrological-geochemical properties demonstrate that Dyusembay Pb-Zn mineralized zone is comparable to distal-type of SEDEX deposit.

키워드

참고문헌

  1. Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, v.92, p.181-193. https://doi.org/10.1007/BF00375292
  2. Crusius, J., Calvert, S., Pedersen, T. and Sage, D. (1996) Rhe-nium and molybdenum enrichments in sediments as indica-tors of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, v.145, p.65-78. https://doi.org/10.1016/S0012-821X(96)00204-X
  3. Empr.gov.bc.ca. (2018) E - Sediment-Hosted. [online] Available at: http://www.empr.gov.bc.ca/Mining/Geoscience/MineralDepositProfiles/ListbyDepositGroup/Pages/ESedimentHosted.aspx#e14 [Accessed 11 Mar. 2018].
  4. Karakozova, C.V. (1979) Report on the object "Exploration of polymetallic materials (lead, zinc) at the site of Dyusembay of the Karaganda region.
  5. Kazgeologiya (2015) Ministry of Investment and Development of the Republic of Kazakhstan. 90p.
  6. Korea Resources Corporation: KORES (2015) Report on the results of 1st year joint exploration works on polymetallic ores (lead, zinc) at Dyusembay in Kazakhstan. 57p.
  7. Korea Resources Corporation: KORES (2016) Report on the results of 2nd year joint exploration works on polymetallic ores (lead, zinc) at Dyusembay in Kazakhstan. 18p.
  8. Large, R. and McGoldrick, P. (1998) Summary of lithogeochemical halos and vectos to ore for Australian Proterozoic stratiform Zn-Pb-Ag deposits. in McGoldrick, P., Bull, S., Cooke, D., and Large, R. eds., Sedimente-hosted base metal deposits, Project outcomes report. CODES, AMIRA/ARC project P384A, p.65-69.
  9. Large, R.R., Bull, S.W. and McGoldrick, P.J. (2000) Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn-Pb-Ag deposits Part 2. HYC deposit, McArthur River, Northern Territory, Journal of Geochemical Exploration, v.68, p.105-126. https://doi.org/10.1016/S0375-6742(99)00084-9
  10. Leach, D., Sangster, D., Kelley, K., Large, R.R., Garven, G., Allen, Cand, G.J. and Walters, S.G. (2005) Sediment-hosted lead-zinc deposits: A global perspective, Economic Geology, 100th, p.561-607.
  11. McLennan, S.M. (1981) Trace Element Geochemistry of Sedimentary Rocks: Implications for the Composition and Evolution of the Continental Crust, The Australian National University, Canberra, 624p.
  12. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In:Barnes, H.L. (Ed.), Geochemistry of Hydrothermal Ore Deposits, 2nd ed. Wiley, New York, p.509-567.
  13. Piper, D.Z. and Calvert, S.E. (2009) A marine biogeochemical perspective on black shale deposition. Earth Science Reviews, v.95, p.63-96. https://doi.org/10.1016/j.earscirev.2009.03.001
  14. Sangster, D.F. (2002) The role of dense brines in the formation of vent-distal sedimentary-exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence, Mineralium Deposita, v.37, p.149-157. https://doi.org/10.1007/s00126-001-0216-9
  15. Slack, J.F., Dumoulin, J.A., Schmidt, J.M., Young, L.E. and Rombach, C.S. (2004) Paleozoic Sedimentary Rocks in the Red Dog Zn-Pb-Ag District and Vicinity, Western Brooks Range, Alaska: Provenance, Deposition, and Metallogenic Significance. Economic Geology, v.99, p.1385-1414. https://doi.org/10.2113/gsecongeo.99.7.1385
  16. Taylor, B. and Beaudoin, G. (2002) Sullivan Pb-Zn-Ag deposit, B. C.: Evidence for hydrothermal sulphur, and bacterial and thermochemical sulphate reduction. Mineral Deposits Division of the Geological Association of Canada, p.696-719.
  17. United States Geological Survey: USGS (2018) Mineral commodity summaries 2018, 190p.