DOI QR코드

DOI QR Code

Recent Natural Products Involved in the Positive Modulation of Melanogenesis

Melanogenesis 양성적 조절 에 관여하는 최근 천연물의 동향

  • Kim, Moon-Moo (Department of Applied Chemistry, Dong-Eui University)
  • Received : 2018.05.04
  • Accepted : 2018.06.01
  • Published : 2018.06.30

Abstract

Melanogenesis is involved in the pigmentation of the hair, eyes, and skin in living organisms. Various signaling pathways stimulated by ${\alpha}-MSH$, SCF/c-Kit, $Wnt/{\beta}-catenin$, nitric oxide and ultraviolet activate melanocyte, leading to melanin production by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expressed via the microphthalmia-associated transcription factor (MITF). However, the abnormal regulation of melanogenesis causes dermatological issues such as graying hair and vitiligo. Therefore, the activators that promote melanogenesis are crucial for the prevention of graying hair and the treatment of hypopigmentary disorders. Many melanogenesis stimulators have been studied for the development of novel drugs derived from synthesized compounds and natural products. Here, in addition to providing a description of a common signaling pathway in the melanogenesis of graying hair and the vitiligo process for the development of novel anti-hair graying agents, this article reviews natural herbs and the active ingredients that promote melanin synthesis as a pharmaceutical agent for the treatment of vitiligo. In particular, compounds such as Imatinib and Sugen with a stimulating effect on melanogenesis as a side effect of the drugs, are also introduced. Recent advances in research on natural plant extracts such as Polygonum multiflorum, Rhynchosia Nulubilis, Black oryzasativa, and Orysa sartiva, widely known as traditional and medicinal extracts, are also reviewed.

멜라닌 생성은 생체 내에서 모발, 눈 및 피부의 색소 침착과 관련이 있는 것으로 알려져있다. 자외선 뿐만아니라 ${\alpha}-MSH$, SCF/c-Kit, $Wnt/{\beta}-catenin$ 및 산화 질소 신호 전달 경로와 같은 다양한 외부 인자가 멜라닌 세포를 자극하여 microphthalmia-associated transcription factor (MITF)에 의하여 발현되는 tyrosinase, tyrosinase 관련 단백질 (TRP)-1 및 TRP-2에 의하여 멜라닌이 생성된다. 그러나 멜라닌 생성의 비정상적인 조절은 모발 백발화와 백반증과 같은 피부병 문제를 유발한다. 따라서, 멜라닌 생성을 촉진하는 활성제는 모발 백발화의 예방 및 저 색소증 치료에 매우 중요하다. 많은 멜라닌 생성 자극제가 합성 화합물 및 천연물질로부터 유래한 신규 약물의 개발을 위해 연구되어 왔다. 여기서는, 새로운 항 백발화제의 개발을 위한 백발화 및 백반증 과정의 melanogenesis에 공통적인 신호 경로에 대한 기술 뿐만 아니라 백반증의 치료를 위한 약제로 멜라닌합성을 촉진하는 천연 약초와 그 활성 성분에 대하여 기술한다. 특히, 약물의 부작용으로 melanogenesis에 자극 효과가 있는 Imatinib 및 Sugen와 같은 화합물에 대하여 소개한다. 뿐만 아니라, 민간의 전통약제로 널리 알려진 적하수오, 흑임자, 흑미, 서목태, 현미와 같은 천연 식물추출물에 대한 최근 연구에 대하여 기술한다.

Keywords

References

  1. Abbe, P., Mantoux, F., Aberdam, E., Peyssonnaux, C., Eychene, A., Ortonne, J. P. and Ballotti, R. 2000. Ras mediates the cAMP-dependent activation of extracellular signalregulated kinases (ERKs) in melanocytes. EMBO J. 19, 2900-2910. https://doi.org/10.1093/emboj/19.12.2900
  2. Abdel-Malek, Z. A., Swope, V. B. and Indra, A. 2017. Revisiting Epidermal Melanocytes: Regulation of Their Survival, Proliferation, and Function in Human Skin.7-38. Melanoma Development: Springer.
  3. Alexandrescu, D. T., Dasanu, C. A., Farzanmehr, H. and Kauffman, C. L. 2008. Persistent cutaneous hyperpigmentation after tyrosine kinase inhibition with imatinib for GIST. Dermatol. Online J. 14, 7.
  4. Ali, S. A. and Meitei, K. V. 2011. Nigella sativa seed extract and its bioactive compound thymoquinone: the new melanogens causing hyperpigmentation in the wall lizard melanophores. J. Pharm. Pharmacol. 63, 741-746. https://doi.org/10.1111/j.2042-7158.2011.01271.x
  5. Ali, S. A., Sultan, T., Galgut, J. M., Sharma, R., Meitei, K. V. and Ali, A. S. 2011. In vitro responses of fish melanophores to lyophilized extracts of Psoralea corylifolia seeds and pure psoralen. Pharm. Biol. 49, 422-427. https://doi.org/10.3109/13880209.2010.521164
  6. Babitha, S., Shin, J. H., Nguyen, D. H., Park, S. J., Reyes, G. A., Caburian, A. and Kim, E. K. 2011. A stimulatory effect of Cassia occidentalis on melanoblast differentiation and migration. Arch. Dermatol. Res. 303, 211-216. https://doi.org/10.1007/s00403-011-1127-y
  7. Bae, G. J. and Ha, B. J. 2015. Antioxidative effect of fermented Rhynchosia nulubilis in obese rats. J. Food Hyg. Saf. 30, 383-389. https://doi.org/10.13103/JFHS.2015.30.4.383
  8. Birla, D. S., Malik, K., Sainger, M., Chaudhary, D., Jaiwal, R. and Jaiwal, P. K. 2017. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit. Rev. Food Sci. Nutr. 57, 2455-2481. https://doi.org/10.1080/10408398.2015.1084992
  9. Campisi, J. 2005. Suppressing cancer: the importance of being senescent. Science 309, 886-887. https://doi.org/10.1126/science.1116801
  10. Chaabane, F., Mustapha, N., Mokdad-Bzeouich, I., Sassi, A., Kilani-Jaziri, S., Franca, M. G. D., Michalet, S., Fathallah, M., Krifa, M. and Ghedira, K. 2016. In vitro and in vivo anti-melanoma effects of Daphne gnidium aqueous extract via activation of the immune system. Tumor Biol. 37, 6511-6517. https://doi.org/10.1007/s13277-015-4492-x
  11. Chiang, H. M., Lin, J. W., Hsiao, P. L., Tsai, S. Y. and Wen, K. C. 2011. Hydrolysates of citrus plants stimulate melanogenesis protecting against UV-induced dermal damage. Phytother. Res. 25, 569-576. https://doi.org/10.1002/ptr.3302
  12. D'Mello, S. A., Finlay, G. J., Baguley, B. C. and Askarian-Amiri, M. E. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17, 1144. https://doi.org/10.3390/ijms17071144
  13. Decker, H. and Tuczek, F. 2017. The recent crystal structure of human tyrosinase related protein 1 (HsTYRP1) solves an old problem and poses a new one. Angew Chem. Int. Ed. Engl. 56, 14352-14354. https://doi.org/10.1002/anie.201708214
  14. Di Tullio, F., Mandel, V. D., Scotti, R., Padalino, C. and Pellacani, G. 2018. Imatinib-induced diffuse hyperpigmentation of the oral mucosa, the skin, and the nails in a patient affected by chronic myeloid leukemia: report of a case and review of the literature. Int. J. Dermatol. 1, 1-7.
  15. Dolinska, M. B., Kus, N. J., Farney, S. K., Wingfield, P. T., Brooks, B. P. and Sergeev, Y. V. 2017. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity. Pigment Cell Melanoma Res. 30, 41-52. https://doi.org/10.1111/pcmr.12546
  16. Hu, C., Zawistowski, J., Ling, W. and Kitts, D. D. 2003. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric. Food Chem. 51, 5271-5277. https://doi.org/10.1021/jf034466n
  17. Ide, T., Iwase, H., Amano, S., Sunahara, S., Tachihara, A., Yagi, M. and Watanabe, T. 2017. Physiological effects of ${\gamma}$-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation. J. Nutr. Biochem. 41, 42-55. https://doi.org/10.1016/j.jnutbio.2016.12.001
  18. Jeon, S. and Kim, M. M. 2017. Black sesame ethanolic extract promotes melanin synthesis. J. Life Sci. 27, 1452-1461.
  19. Jeon, S., Kim, N. H., Koo, B. S., Kim, J. Y. and Lee, A. Y. 2009. Lotus (Nelumbo nuficera) flower essential oil increased melanogenesis in normal human melanocytes. Exp. Mol. Med. 41, 517. https://doi.org/10.3858/emm.2009.41.7.057
  20. Jin, M. L., Park, S. Y., Kim, Y. H., Park, G., Son, H. J. and Lee, S. J. 2012. Suppression of ${\alpha}$-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int. J. Mol. Med. 29, 119-124.
  21. Kim, H. and Kim, M. M. 2017. Promotive effect of Polygonum multiflorum radix ethanol extract on melanogenesis. J. Life Sci. 27, 423-429. https://doi.org/10.5352/JLS.2017.27.4.423
  22. Kim, J. and Kim, M. M. 2018. Effect of Rhynchosia nulubilis ethanolic extract on DOPA oxidation and melaninsynthesis. J. Life Sci. 28, 331-338.
  23. Kwon, E. J. and Kim, M. M. 2017. Agmatine modulates melanogenesis via MITF signaling pathway. Environ. Toxicol. Pharmacol. 49, 124-130. https://doi.org/10.1016/j.etap.2016.12.008
  24. Lai, X., Wichers, H. J., Soler-Lopez, M. and Dijkstra, B. W. 2017. Structure of human tyrosinase related Protein 1 reveals a binuclear zinc active site important for melanogenesis. Angew. Chem. 129, 9944-9947. https://doi.org/10.1002/ange.201704616
  25. Lai, X., Wichers, H. J., Soler-Lopez, M. and Dijkstra, B. W. 2018. Structure and function of human tyrosinase and tyrosinase-related proteins. Chemistry 24, 47-55. https://doi.org/10.1002/chem.201704410
  26. Lin, H. K., Chen, Z., Wang, G., Nardella, C., Lee, S. W., Chan, C. H., Yang, W. nL., Wang, J., Egia, A. and Nakayama, K. I. 2010. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374-379. https://doi.org/10.1038/nature08815
  27. Lopez-Tejedor, D. and Palomo, J. M. 2018. Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Protein Expr. Purif. 145, 64-70. https://doi.org/10.1016/j.pep.2018.01.001
  28. Lopez-Bergami, P. 2011. The role of mitogen-and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res. 24, 902-921. https://doi.org/10.1111/j.1755-148X.2011.00908.x
  29. Matamá, T., Gomes, A. C. and Cavaco-Paulo, A. 2015. Hair coloration by gene regulation: fact or fiction? Trends Biotechnol. 33, 707-711. https://doi.org/10.1016/j.tibtech.2015.10.001
  30. Miyazono, K., Maeda, S. and Imamura, T. 2005. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251-263. https://doi.org/10.1016/j.cytogfr.2005.01.009
  31. Na, M., Park, J., An, R., Lee, S., Kim, Y., Lee, J., Seong, R., Lee, K. and Bae, K. 2000. Quality evaluation of Polygoni Multiflori radix. Kor. J. Pharmacogn. 31, 335-339.
  32. Nawaz, A. 2017. Tyrosinase: sources, structure and applications. Int. J. Biotech. Bioeng. 3, 135-141.
  33. Olivares, C. and Solano, F. 2009. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 22, 750-760. https://doi.org/10.1111/j.1755-148X.2009.00636.x
  34. Perez-Sanchez, A., Barrajon-Catalan, E., Herranz-Lopez, M., Castillo, J. and Micol, V. 2016. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model. J. Dermatol. Sci. 84, 169-177. https://doi.org/10.1016/j.jdermsci.2016.08.004
  35. Pillaiyar, T., Manickam, M. and Namasivayam, V. 2017. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32, 403-425. https://doi.org/10.1080/14756366.2016.1256882
  36. Pretzler, M., Bijelic, A. and Rompel, A. 2017. Heterologous expression and characterization of functional mushroom tyrosinase (Ab PPO4). Sci. Rep. 7, 1810. https://doi.org/10.1038/s41598-017-01813-1
  37. Sajid, M. and Ali, S. A. 2011. Mediation of cholino-piperine like receptors by extracts of Piper nigrum induces melanin dispersion in Rana tigerina tadpole melanophores. J. Recept. Signal Transduct. Res. 31, 286-290. https://doi.org/10.3109/10799893.2011.583254
  38. Schlessinger, D. I. and James, W. D. 2017. Biochemistry, Melanin, StatPearls [Internet].
  39. Seiberg, M. 2013. Age-induced hair greying-the multiple effects of oxidative stress. Int. J. Cosmet. Sci. 35, 532-538. https://doi.org/10.1111/ics.12090
  40. Seo, H., Seo, G. Y., Ko, S. Z. and Park, Y. H. 2011. Inhibitory effects of ethanol extracts from Polygoni multiflori radix and Cynanchi wilfordii radix on melanogenesis in melanoma cells. J. Kor. Soc. Food. Sci. Nutr. 40, 1086-1091. https://doi.org/10.3746/jkfn.2011.40.8.1086
  41. Singh, S. K., Abbas, W. A. and Tobin, D. J. 2012. Bone morphogenetic proteins differentially regulate pigmentation in human skin cells. J. Cell Sci. 125, 4306-4319. https://doi.org/10.1242/jcs.102038
  42. Skandrani, I., Pinon, A., Simon, A., Ghedira, K. and Chekir-Ghedira, L. 2010. Chloroform extract from Moricandia arvensis inhibits growth of B16-F0 melanoma cells and promotes differentiation in vitro. Cell Prolif. 43, 471-479. https://doi.org/10.1111/j.1365-2184.2010.00697.x
  43. Solano, F. 2018. On the metal cofactor in the tyrosinase family. Int. J. Mol. Sci. 19, 633. https://doi.org/10.3390/ijms19020633
  44. Speeckaert, R. and van Geel, N. 2018. Melanocyte and melanogenesis: applied anatomy and physiology. Vitiligo: Medical and Surgical Managmement, 9.
  45. Tenyang, N., Ponka, R., Tiencheu, B., Djikeng, F. T., Azmeera, T., Karuna, M. S., Prasad, R. B. and Womeni, H. M. 2017. Effects of boiling and roasting on proximate composition, lipid oxidation, fatty acid profile and mineral content of two sesame varieties commercialized and consumed in Far-North Region of Cameroon. Food Chem. 221, 1308-1316. https://doi.org/10.1016/j.foodchem.2016.11.025
  46. Thang, N. D., Diep, P. N., Lien, P. T. H. and Lien, L. T. 2017. Polygonum multiflorum root extract as a potential candidate for treatment of early graying hair. J. Adv. Pharm. Technol. Res. 8, 8. https://doi.org/10.4103/2231-4040.197332
  47. Tian, H. and Guo, R. 2017. Cardioprotective potential of sesamol against ischemia/reperfusion injury induced oxidative myocardial damage. Biomed. Res. 28. 2156-2163.
  48. Tobin, D. and Paus, R. 2001. Graying: gerontobiology of the hair follicle pigmentary unit. Exp. Gerontol. 36, 29-54. https://doi.org/10.1016/S0531-5565(00)00210-2
  49. Tobin, D. J., Hagen, E., Botchkarev, V. A. and Paus, R. 1998. Do hair bulb melanocytes undergo apotosis during hair follicle regression (catagen)? J. Invest. Dermatol. 111, 941-947. https://doi.org/10.1046/j.1523-1747.1998.00417.x
  50. Van Neste, D. and Tobin, D. J. 2004. Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron 35, 193-200. https://doi.org/10.1016/j.micron.2003.11.006
  51. Videira, I. F. d. S., Moura, D. F. L. and Magina, S. 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88, 76-83. https://doi.org/10.1590/S0365-05962013000100009
  52. Vogt, L., Laverman, G. D., de Zeeuw, D. and Navis, G. 2003. Tyrosine kinase inhibition and grey hair. Lancet 361, 1056.
  53. Wan, P., Hu, Y. and He, L. 2011. Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors. Mol. Cell. Biochem. 354, 241-246. https://doi.org/10.1007/s11010-011-0823-4
  54. Weston, C. R. and Davis, R. J. 2007. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142-149. https://doi.org/10.1016/j.ceb.2007.02.001
  55. Wood, J. M., Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J., Hasse, S., Thornton, M. J., Shalbaf, M. and Paus, R. 2009. Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J. 23, 2065-2075. https://doi.org/10.1096/fj.08-125435
  56. Xu, P., Su, S., Tan, C., Lai, R. S. and Min, Z. S. 2017. Effects of aqueous extracts of Ecliptae herba, Polygoni multiflori radix praeparata and Rehmanniae radix praeparata on melanogenesis and the migration of human melanocytes. J. Ethnopharmacol. 195, 89-95. https://doi.org/10.1016/j.jep.2016.11.045
  57. Yin, L., Pang, G., Niu, C., Habasi, M., Dou, J. and Aisa, H. A. 2018. A novel psoralen derivative-MPFC enhances melanogenesis via activation of p38 MAPK and PKA signaling pathways in B16 cells. Int. J. Mol. Med. 41, 3727-3735.
  58. Yoshida, M., Takahashi, Y. and Inoue, S. 2000. Histamine induces melanogenesis and morphologic changes by protein kinase A activation via H2 receptors in human normal melanocytes. J. Invest. Dermatol. 114, 334-342. https://doi.org/10.1046/j.1523-1747.2000.00874.x
  59. Zaidi, K., Ali, S., Ali, A. and Thawani, V. 2017. Natural melanogenesis stimulator a potential tool for the treatment of hypopigmentation disease. Int. J. Mol. Biol. Open Access 2, 00012.
  60. Zhou, J., Shang, J., Ping, F. and Zhao, G. 2012. Alcohol extract from Vernonia anthelmintica (L.) willd seed enhances melanin synthesis through activation of the p38 MAPK signaling pathway in B16F10 cells and primary melanocytes. J. Ethnopharmacol. 143, 639-647. https://doi.org/10.1016/j.jep.2012.07.030