DOI QR코드

DOI QR Code

TM-3 cell에서 eritadenine 함유 신령버섯균사체 액체배양물의 testosterone 생성 촉진효과

Enhancement of Testosterone in TM3 Leydig Cells by an Eritadenine-containing Agaricus blazei Mycelial Liquid Culture Extract

  • 김영숙 ((주)HK바이오텍 항노화연구소) ;
  • 정재은 ((주)HK바이오텍 항노화연구소) ;
  • 정희정 (안전성평가연구소 경남환경독성본부 경남생명자원연구센터) ;
  • 문연규 ((주)HK바이오텍 항노화연구소) ;
  • 김정옥 ((주)HK바이오텍 항노화연구소) ;
  • 하영래 ((주)HK바이오텍 항노화연구소)
  • Kim, Young Suk (Antiaging Institute, HK Biotech., Co., Ltd.) ;
  • Jung, Jae Eun (Antiaging Institute, HK Biotech., Co., Ltd.) ;
  • Moon, Yeon Kyu (Gyeongnam Biological Resource Research Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology) ;
  • Jeong, Hui Jeong (Antiaging Institute, HK Biotech., Co., Ltd.) ;
  • Kim, Jeong Ok (Antiaging Institute, HK Biotech., Co., Ltd.) ;
  • Ha, Yeong Lae (Antiaging Institute, HK Biotech., Co., Ltd.)
  • 투고 : 2018.01.29
  • 심사 : 2018.03.28
  • 발행 : 2018.06.30

초록

신령버섯 액체배양추출물(Agaricus blazei mycelial liquid culture extract: ABMLCE)과 eritadenine (EA)의 mouse 정소 Leydig TM3 세포에서 testosterone (TS) 생성에 관한 연구를 정상 조건과 산화스트레스 조건에서 수행하였다. 정상 조건에서는 TM3 세포를 DMEM 배지에 배양하면서 EA (0~100 ppm)와 EA (0~50 ppm) + ABMLCE (10 ppm)를 24 hr처리하였다. 산화스트레스 조건에서는 TM3 세포를 $H_2O_2$ ($50{\mu}M$)를 4 hr 처리하고 정상 조건과 동일하게 처리하였다. DMEM 배양물에 함유된 TS 함량, HSD3B2 효소 활성, $5{\alpha}-R2$ 효소 활성과 NO 함량을 assay kit를 사용하여 측정하였다. EA는 정상 조건이나 산화스트레스 조건에서 TS 함량을 유의성 있게 증가시켰고, ABMLCE와 ABMLCE + EA도 TS의 함량을 증가시켰다. TS 전구체 생성에 관여하는 HSD3B2 효소 활성은 두 조건에서 모두 EA, ABMLCE, ABMLCE + EA에 의해서 증가되었다. 또한 TS를 DTH로 전환시켜 TS함량을 감소시키는 역할을 하는 $5{\alpha}-R2$ 효소활성은 정상 조건 및 산화스트레스 조건에서 ABMLCE에 의해서만 감소되었다. Free radical로 작용하는 NO의 함량은 두 조건 모두 EA, ABMLCE, ABMLCE + EA에 의해 감소되었다. 이 결과는 EA, ABMLCE, ABMLCE + EA 처리가 TM3 세포의 HSD3B2 효소 활성을 증가시키고, NO 생성을 억제하여 TS 함량을 증가시켰음을 의미하며 EA + ABMLCE 혼합물이 남성 성기능개선 물질로 사용될 수 있음을 의미한다.

Enhancement mechanistic actions of testosterone (TS) productions in mouse Leydig TM3 cells by the eritadenine (EA) and/or the Agaricus blazei mycelial liquid culture extract (ABMLCE). Productions of TS in TM3 cells were investigated in normal and oxidative-stressed culture conditions. In the normal culture condition, TM3 cells grown in a Dulbecco's Modified Eagle's Medium (DMEM) were treated with EA (0~100 ppm) and ABMLCE (10 ppm) + EA (0~50 ppm) for 24 hr, and in the oxidative-stressed culture condition, the cells grown in DMEM containing $50{\mu}M$ $H_2O_2$ to induce oxidative stress for 4 h were treated with the same as those in the normal culture condition. TS content, $3{\beta}$-hydroxysteroid dehydrogenase 2 (HSD3B2) enzyme activity, $5{\alpha}$-reductase 2 ($5{\alpha}-R2$) enzyme activity, and free-radical nitric oxide (NO) content in the culture media were measured using their corresponding assay kits. EA, ABMLCE, and ABMLCE + EA significantly, p<0.05, enhanced TS productions in both cultural conditions, relative to control treatment. The activity of the HSD3B2 enzyme, which is involved in the production of precursors for TS production, was elevated by EA, ABMLCE, and ABMLCE + EA treatments in both culture conditions. The activity of the $5{\alpha}-R2$ enzyme, which converts TS to dihydroxytestosterone (DHT), was not significantly affected in either culture condition by EA, ABMLCE, or ABMLCE + EA treatments. The treatments included reduced NO content. These results indicate that EA, ABMLCE, and EA + ABMLCE treatments elevated TS in TM3 cells via the enhancements of HSD3B2 activity and the reduction of NO production, and also imply that EA and ABMLCE or EA + ABMLCE could be useful materials for the production of TS in humans.

키워드

참고문헌

  1. Afrin, S., Rakib, M. A., Kim, B. H., Kim, J. O. and Ha, Y. L. 2016. Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. J. Agric. Food Chem. 64, 2263-2268. https://doi.org/10.1021/acs.jafc.5b05869
  2. Bhasin, S., Cunningham, G. R., Hayes, F. J., Matsumoto, A. M., Snyder, P. J., Swerdloff, R. S. and Montori, V. M. 2006. Testosterone therapy in adult men with androgen deficiency syndromes: An endocrine society clinical practice guideline. J. Clin. Endocr. Metab. 91, 1995-2010. https://doi.org/10.1210/jc.2005-2847
  3. Gruenewald, D. A. and Matsumoto, A. M. 2003. Testosterone supplementation therapy for older men: Potential benefits and risks. J. Am. Geriatr. Soc. 51, 101-115. https://doi.org/10.1034/j.1601-5215.2002.51018.x
  4. Moon, Y. K., Jung, J. E., Cho, B. I., Heo, J. D., Choi, J., Kim,. J. O. and Ha, Y. L. 2018. Blood pressure reduction of SHR treated with EA-containing Lentinus edodes mycelial solid culture extract. J. Life Sci. 28, 187-194.
  5. Kim, J. O. 2018. Composition for stimulating testosterone comprising eritadenine as effective component. KR10-2018-0001201.
  6. Lee, K. S., Seo, E. K. and Choe, S. Y. 2016. Effects of the mixture of fenugreek seeds and Lespedeza cuneata extracts on testosterone synthesis in TM3 cells oxidative stressed with $H_2O_2$. J. Appl. Biol. Chem. 59, 305-311.
  7. Muller, M., van der Schouw, Y. T., Thijssen, J. H. H. and Grobbee, D. E. 2003. Endogenous sex hormones and cardiovascular disease in men. J. Clin. Endocr. Metab. 88, 5076-5086. https://doi.org/10.1210/jc.2003-030611
  8. Nieschlag, E., Swerdloff, R., Behre, H. M., Gooren, L. J., Kaufman, J. M., Legros, J. J., Lunenfeld, B., Morley, J. E., Schulman, C., Wang, C., Weidner, W. and Wu, F. C. W. 2006. Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, and EAU recommendations. J. Androl. 27, 135-137. https://doi.org/10.2164/jandrol.05047
  9. Okumura, K., Matsumoto, K., Fukamizu, M., Yasuo, H. and Taguchi, Y. 1974. Synthesis and hypocholesterolemic activities of eritadenine derivatives. J. Med. Chem. 17, 846-855. https://doi.org/10.1021/jm00254a014
  10. Park, S., Choi, H., Seo, J., Cho, S., Kim, J., Hong, S. W. and Park, C. 2016. Effect of dietary isoflavones of soybean by-product on estrogen and testosterone levels in mouse. Kor. J. Agric. Sci. 43, 742-749.
  11. Rasmussen, M. K. and Ekstrand, B. 2014. Regulation of $3{\beta}$-hydroxysteroid dehydrogenase and sulphotransferase 2A1 gene expression in primary porcine hepatocytes by selected sex-steroids and plant secondary metabolites from chicory (Cichorium intybus L.) and worm wood (Artemisia sp.). Gene 536, 53-58. https://doi.org/10.1016/j.gene.2013.11.092
  12. Sattler, F., Bhasin, S., He, J., Chou, C. P., Castaneda-Sceppa, C., Yarasheski, K., Binder, E., Schroeder, E. T., Kawakubo, M., Zhang, A., Roubenoff, R. and Azen, S. 2011. Testosterone threshold levels and lean tissue mass targets needed to enhance skeletal muscle strength and function: the HORMA trial. J. Gerontol. A Biol. Sci. Med. Sci. 66, 122-129.
  13. Wang, C., Hikim, A. S., Ferrini, M., Bonavera, J. J., Vernet, D., Leung, A., Lue, Y. H., Gonzalez-Cadavid, N. F. and Swerdloff, R. S. 2002. Male reproductive aging: using the brown Norway rat as a model for man. Novartis Found Symp. 242, 82-97.
  14. Yang, H., Hwang, I., Kim, S., Hong, E. J. and Jeung, E. B. 2013. Lentinus edodes promotes fat removal in hypercholesterolemic mice. Exp. Ther. Med. 6, 1409-1413. https://doi.org/10.3892/etm.2013.1333
  15. Zhang, Y., Ge, R. and Hardy, M. P. 2008. Androgen-forming stem Leydig cells: identification, function and therapeutic potential. Dis. Markers 24, 277-286. https://doi.org/10.1155/2008/905025