DOI QR코드

DOI QR Code

수온변화에 따른 붉바리(Epinephelus akaara)의 heat shock protein (Hsp) 70 mRNA 발현

Molecular Cloning and Expression Analysis of Red-spotted Grouper, Epinephelus akaara Hsp70

  • 민병화 (동해수산연구소 양식산업과) ;
  • 허준욱 (생물모니터링센터) ;
  • 박형준 (국립수산과학원 양식관리과)
  • Min, Byung Hwa (Aquaculture Industry Research Division, East Sea Fisheries Research Institute) ;
  • Hur, Jun Wook (Bio-Monitoring Center) ;
  • Park, Hyung Jun (Aquaculture Management Division, National Institute of Fisheries Science)
  • 투고 : 2018.01.17
  • 심사 : 2018.02.19
  • 발행 : 2018.06.30

초록

한국의 고급 양식대상 어종인 붉바리(Epinephelus akaara)로부터 새로운 heat shock protein (Hsp) 70을 동정하였다. 붉바리 Hsp70 (RgHsp70)의 cDNA는 RACE (rapid amplification of cDNA ends)법을 사용하였고, RgHsp70 cDNA의 전장은 2,152 bp이고, 5'-terminal untranslated region (UTR)은 105 bp, 3'-terminal UTR은 274 bp, 590개의 아미노산을 암호화하는 open reading frame (ORF)는 1,773 bp였으며, 분자무게(molecular weight)는 64.9 kDa 및 등전위값(isoelectric point, pI)은 5.2였다. 추정되는 아미노산 비교 및 계통발생학적 분석 결과, 다른 어종과 마찬가지로 Hsp70 고유의 signature를 포함하는 것을 비롯하여 높은 유사성을 나타내었으므로 RgHsp70이 Hsp70 family임을 확인할 수 있었다 RgHsp70 mRNA는 간과 두신 조직에서 높은 발현을 보였으며, 48시간 동안 수온별(21, 18, 15 및 $12^{\circ}C$) 노출 후 간 조직에서 대조구인 $21^{\circ}C$보다 $12^{\circ}C$에서 발현이 증가함을 확인하였다. 본 연구에서는, 수온이 하강함에 따라 RgHsp70 mRNA 발현에 주요한 영향을 미치는 것으로 보아, 수온변화에 따른 스트레스로 인해 발현의 변화를 나타내는 주요 스트레스성 단백질임을 확인할 수 있었다.

A new heat shock protein 70 was identified in red-spotted grouper (Epinephelus akaara) based on an expression analysis. The cDNA of red-spotted grouper Hsp70 (designated RgHsp70) was cloned by the rapid amplification of cDNA ends (RACE) techniques. The full-length of RgHsp70 cDNA was 2,152 bp, consisting of a 5'-terminal untranslated region (UTR) of 105 bp, a 3'-terminal UTR of 274 bp, and an open reading frame (ORF) of 1,773 bp that encode a polypeptide of 590 amino acids with a theoretical molecular weight of 64.9 kDa and an estimated isoelectric point of 5.2. Multiple alignment and phylogenetic analyses revealed that the RgHsp70 gene shares a high similarity with other Hsp70 fish genes. RgHsp70 contained all three classical Hsp70 family signatures. The results indicated the RgHsp70 is a member of the heat shock protein 70 family. RgHsp70 mRNA was predominately expressed in the liver, with reduced expression noted in the head-kidney tissues. The expression analysis of different water temperatures (21, 18, 15 and $12^{\circ}C$) for sampled livers revealed that expression gradually increased at $12^{\circ}C$ compared to $21^{\circ}C$. In this study, the effects of water temperature lowering on the physiological conditions were investigated, and the results revealed that novel RgHsp70 may be an important molecule involved in stress responses.

키워드

참고문헌

  1. Ali, K. S., Dorgai, L., Abraham, M. and Hermesz, E. 2003. Tissue-and stressor-specific differential expression of two hsc70 genes in carp. Biochem. Biophys. Res. Commun. 307, 503-509. https://doi.org/10.1016/S0006-291X(03)01206-3
  2. Basu, N., Todgham, A. E., Ackerman, P. A., Bibeau, M. R., Nakano, K., Schulte, P. M. and Iwama, G. K. 2002. Heat shock proteins genes and their functional significance in fish. Gene 295, 173-183. https://doi.org/10.1016/S0378-1119(02)00687-X
  3. Chen, J., Xiao, S. and Yu, Z. 2011. F-type lectin involved in defense against bacterial infection in the pearl oyster (Pinctada martesii). Fish Shellfish Immunol. 30, 750-754. https://doi.org/10.1016/j.fsi.2010.12.025
  4. Deane, E. E., Kelly, S. P., Lo, C. K. M. and Woo, N. Y. S. 1999. Effects of GH, prolactin and cortisol on hepatic heat shock protein 70 expression in a marine teleost Sparus sarba. J. Endocrinol. 161, 413-421. https://doi.org/10.1677/joe.0.1610413
  5. Deane, E. E. and Woo, N. Y. S. 2005. Cloning and characterization of the hsp70 multi-gene family from silver sea bream: Modulated gene expression between warm and cold temperature acclimation. Biochem. Biophy. Res. Commun. 330, 776-783. https://doi.org/10.1016/j.bbrc.2005.03.039
  6. Deane, E. E. and Woo, N. Y. S. 2005. Growth hormone increases hsc70/hsp70 expression and protects against apotosis in whole blood preparations from silver sea bream. Ann. NY. Acad. Sci. 1040, 288-292. https://doi.org/10.1196/annals.1327.044
  7. Feder, M. E. and Hofmann, G. E. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  8. Graser, R. T., Malnar-Dragojevic, D. and Vincek, V. 1996. Cloning and characterization of a 70kDa heat shock cognate (hsc70) gene from the zebra fish (Danio rerio). Genetica 98, 273-276. https://doi.org/10.1007/BF00057591
  9. Hofmann, G., Buckley, B. A., Airaksinen, S., Keen, J. E. and Somero, G. N. 2000. Heat-shock protein expression is absent in the Antartic fish Trematomus bernacchii (Family nototheniidae). Exp. Biol. 203, 2331-2339.
  10. Holmskov, U., Theil, S. and Jensenius, J. C. 2003. Collectins and ficolins: Humoral lectins of the innate immune defense. Annu. Rev. Immunol. 21, 547-578. https://doi.org/10.1146/annurev.immunol.21.120601.140954
  11. Konstantina, M. and Ioannis, K. Z. 2006. Molecular cloning and characterization of two homologues of mannose-binding lectin in rainbow trout. Fish Shellfish Immunol. 21, 305-314. https://doi.org/10.1016/j.fsi.2005.12.007
  12. Lindquist, S. 1986. The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191. https://doi.org/10.1146/annurev.bi.55.070186.005443
  13. Listinsky, J. J., Siegal, G. P. and Listinsky, C. M. 1998. Alpha-L-fucose: a potentially critical molecule in pathologic processes including neoplasia. Am. J. Chin. Pathol. 110, 425-440. https://doi.org/10.1093/ajcp/110.4.425
  14. Logue, J., Tiku, P. and Cossins, A. R. 1995. Heat injury and resistance adaptation in fish. J. Ther. Biol. 20, 191-197. https://doi.org/10.1016/0306-4565(94)00056-O
  15. Milani, V., Noessner, E., Ghose, S., Kuppner, M., Ahrens, B. and Scharner, A. 2002. Heat shock protein 70: role in antigen presentation and immune stimulation. Int. J. Hyperthermia. 18, 563-575. https://doi.org/10.1080/02656730210166140
  16. Ming, J., Xie, J., Xu, P., Liu, W., Ge, X., Liu, B., He, Y., Cheng, Y., Zhou, Q. and Pan, L. 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish Shellfish Immunol. 28, 407-418. https://doi.org/10.1016/j.fsi.2009.11.018
  17. Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Gene. Dev. 12, 3788-3796. https://doi.org/10.1101/gad.12.24.3788
  18. Ojima, N., Yamashita, M. and Watabe, S. 2005. Quantitative mRNA expression profiling of heat-shock protein families in rainbow trout. Boichem. Biophys. Commun. 329, 51-57. https://doi.org/10.1016/j.bbrc.2005.01.097
  19. Park, H., Ahn, I. Y. and Lee, H. E. 2007. Expression of heat shock protein 70 in the thermally stressed Antarctic clam Laternula elliptica. Cell Stress Chaperones 12, 275-282. https://doi.org/10.1379/CSC-271.1
  20. Robert, J. 2004. Evolution of heat shock pretein and immunity. Dev. Comp. Immunol. 27, 449-464.
  21. Sharp, G. J. E and Secombes, C. J. 1993. The role of reactive oxygen species in the killing of the bacterial fish pathogen Aeromonas salmonicida by rainbow trout macrophages. Fish Shellfish Immunol. 3, 119-129. https://doi.org/10.1006/fsim.1993.1013
  22. Song, L., Li, C., Xie, Y., Liu, S., Zhang, J., Yao, J., Jiang, C., Li, Y. and Liu, Z. 2016. Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection. Fish Shellfish Immunol. 49, 154-162. https://doi.org/10.1016/j.fsi.2015.12.009
  23. Srivastava, P. 2002. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185-194. https://doi.org/10.1038/nri749
  24. Wang, Z., Wu, Z., Jian, J. and Lu, Y. 2009. Cloning and expression of heat shock protein 70 gene in the haemocytes of pearl oyster (Pinctada fucata, Gould 1850) responding to bacterial challenge. Fish Shellfish Immunol. 26, 639-645. https://doi.org/10.1016/j.fsi.2008.10.011
  25. Yenari, M. A., Giffard, R. G., Sapolsky, R. M. and Steinberg, G. K. 1999. The neuroprotective potential of heat shock protein 70 (HSP70). Mol. Med. 5, 525-531.
  26. Zhang, X., Huanying, P., Zaohe, W. and Jian, J. 2011. Molecular characterization of heat shock protein 70 gene transcripts during Vibrio harvei infection of humphead snapper, Lutjanus sanguineus. Fish. Physiol. Biochem. 37, 897-910. https://doi.org/10.1007/s10695-011-9487-y
  27. Zmijewski, M. A., Macario, A. J. and Lipinska, B. 2004. Functional similarities and differences of an archaeal HSP70 (DnaK) stress protein compared with its homologue from the bacterium Escherichia coli. J. Mol. Biol. 336, 539-549. https://doi.org/10.1016/j.jmb.2003.12.053