DOI QR코드

DOI QR Code

Computational Analysis of Human Chemokine Receptor Type 6

  • 투고 : 2018.04.17
  • 심사 : 2018.06.25
  • 발행 : 2018.06.30

초록

CXCR6 is a major target in drug design as it is a determinant receptor in many diseases like AIDS, Type I Diabetes, some cancer types, atherosclerosis, tumor formation, liver disease and steatohepatitis. In this study, we propose the active site residues of CXCR6 molecule. We employed homology modelling and molecular docking approach to generate the 3D structure for CXCR6 and to explore its interaction between the antagonists and agonists. 3D models were generated using 14 different templates having high sequence identity with CXCR6. Surflex docking studies using pyridine and pyrimidine derivatives enabled the analysis of the binding site and finding of the important residues involved in binding. 3D structure of CXCL16, a natural ligand for CXCR6, was modelled using PHYRE and protein - protein docking was performed using ClusPro. The residues which were found to be crucial in interaction with the ligand are THR110, PHE113, TYR114, GLN160, GLN195, CYS251 and SER255. This study can be used as a guide for therapeutic studies of human CXCR6.

키워드

참고문헌

  1. S. Limou et al., "Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term non-progression to AIDS", J. Infect. Dis., Vol. 202, pp. 908-915, 2015.
  2. P. Duggal, P. An, T. H. Beaty, S. A. Strathdee, H. Farzadegan, R. B. Markham, L. Johnson, S. J. O'Brien, D. Vlahov, C. A. Winkler, "Genetic influence of CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African Americans", Genes and Immun, vol. 4, pp. 245-50, 2003. https://doi.org/10.1038/sj.gene.6363950
  3. M. Matloubian, A. David, S. Engel, J. E. Ryan, and J. G. Cyster, "A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo", Nat. Immunol., Vol. 1, pp. 298-304, 2000. https://doi.org/10.1038/79738
  4. K. A. Stegmann, F. Robertson, N. Hansi, U. Gill, C. Pallant, T. Christophides, L. J. Pallett, D. Peppa, C. Dunn, G. Fusai, V. Male, B. R. Davidson, P. Kennedy, and M. K. Maini, "CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver", Sci. Rep., Vol. 6, p. 26157, 2016. https://doi.org/10.1038/srep26157
  5. M. M. Gaida, F. Gunther, C. Wagner, H. Friess, N. A. Giese, J. Schmidt, G. M. Hansch, and M. N. Wente, "Expression of the CXCR6 on polymorpho-nuclear neutrophils in pancreatic carcinoma and in acute, localized bacterial infections", Clin. Exp. Immunol., Vol. 154, pp. 216-223, 2008. https://doi.org/10.1111/j.1365-2249.2008.03745.x
  6. S. M. Hald, Y. Kiselev, S. Al-Saad, E. Richardsen, C. Johannessen, M. Eilertsen, T. K. Kilvaer, K. Al-Shibli, S. Andersen, L. T. Busund, R. M. Bremnes, and T. Donnem, "Prognostic impact of CXCL16 and CXCR6 in non-small cell lung cancer: com- bined high CXCL16 expression in tumor stroma and cancer cells yields improved survival", BMC Cancer, Vol. 15, p. 441, 2015. https://doi.org/10.1186/s12885-015-1446-z
  7. L. Deng, N. Chen N, Y. Li, H. Zheng, and Q. Lei, "CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer", Biochim. Biophys. Acta, Vol. 1806, pp. 42-49, 2010.
  8. E. Germanov, L. Veinotte, R. Cullen, E. Chamber-lain, E. C. Butcher, and B. Johnston, "Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells", J. Immunol., Vol. 181, pp. 81-91, 2008. https://doi.org/10.4049/jimmunol.181.1.81
  9. A.Wehr, C. Baeck, F. Heymann, P. M. Niemietz, L. Hammerich, C. Martin, H. W. Zimmermann, O. Pack, N. Gassler, K. Hittatiya, A. Ludwig, T. Luedde, C. Trautwein, and F. Tacke, "Chemokine receptor CXCR6-dependent hepatic NK T cell tccu-mulation promotes inflammation and liver fibrosis", J. Immunol., Vol. 190, pp. 5226-5236, 2013. https://doi.org/10.4049/jimmunol.1202909
  10. C. Gunther, N. Carballido-Perrig, S. Kaesler, J. M. Carballido, and T. Biedermann, "CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells", J. Invest. Dermatol., Vol. 132, pp. 626-634, 2011.
  11. B. J. Rabquer, P. S. Tsou, Y. Hou, E. Thirunavuk-karasu, G. K. Haines, A. J. Impens, K. Phillips, B. Kahaleh, J. R. Seibold, and A. E. Koch, "Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis", Arthritis Res. Ther., Vol. 13, p. R18, 2011. https://doi.org/10.1186/ar3242
  12. L.-S. Ai and F. Liao, "Mutating the four extracel- lular cysteines in the chemokine receptor CCR6 reveals their differing roles in receptor trafficking, ligand binding, and signalling", Biochemistry, Vol. 41, pp. 8332- 8341, 2002. https://doi.org/10.1021/bi025855y
  13. H. Nomiyama, N. Osada, and O. Yoshie, "Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history", Genes Cells, Vol. 18, pp. 1-16, 2012.
  14. M. Thirumurthy, "Fragment based QSAR analysis of CXCR-2 inhibitors using topomer CoMFA approach", J. Chosun Natural Sci., Vol. 10, pp. 209- 215, 2017.
  15. B. K. Kuntal, P. Aparoy, and P. Reddanna, "Easy-Modeller: a graphical interface to MODELLER", BMC Res. Notes, Vol. 3, pp. 226, 2010. https://doi.org/10.1186/1756-0500-3-226
  16. M. Wiederstein and M. J. Sippl, "ProSA-web: inter- active web service for the recognition of errors in three-dimensional structures of proteins", Nucleic Acids Res., Vol. 35, pp. W407-W410, 2007. https://doi.org/10.1093/nar/gkm290
  17. C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of non-bonded atomic inter-actions", Protein Sci., Vol. 2, pp. 1511-1519, 1993. https://doi.org/10.1002/pro.5560020916
  18. S. C. Lovell, I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson, "Structure validation by Ca geometry: f, y and Cb deviation", Proteins, Vol. 50, pp. 437-450, 2002.
  19. J. Zhang, J. Romero, A. Chan, J. Goss, S. Stucka, J. Cross, B. Chamberlain, M. Varoglu, H. Chandon-net, D. Ryan, and B. Lippa, "Biarylsulfonamide CCR9 inhibitors for inflammatory bowel disease", Bioorg. Med. Chem. Lett., Vol. 25, pp. 3661-3664, 2015. https://doi.org/10.1016/j.bmcl.2015.06.046
  20. Sybyl - X 1.1, Tripos International, 1699 South Han-ley Road, St. Louis, MO, 63144-2319, USA, 2010.
  21. L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. E. Sternberg, "The Phyre2 web portal for protein modeling, prediction and analysis", Nat. Protoc., Vol. 10, pp. 845-858, 2015. https://doi.org/10.1038/nprot.2015.053
  22. D. Kozakov, R. Brenke, S. Comeau, S. Vajda, "PIPER: An FFT-based protein docking program with pairwise potentials", Proteins, Vol. 65, pp. 392-406, 2006. https://doi.org/10.1002/prot.21117
  23. Z. Xiang, "Advances in homology protein structure modelling", Curr. Protein Pept. Sci., Vol. 7, pp. 217-227, 2006. https://doi.org/10.2174/138920306777452312
  24. J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, "The I-TASSER Suite: protein structure and function prediction", Nat. Methods, Vol. 12, pp. 7-8, 2015. https://doi.org/10.1038/nmeth.3213
  25. L. J. McGuffin, J. D. Atkins, B. R. Salehe, A. N. Shuid, and D. B. Roche, "IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences", Nucleic Acids Res., Vol. 43, pp. W169-W173, 2015. https://doi.org/10.1093/nar/gkv236
  26. S. K. Nagarajan and T. Madhavan, "Theoretical protein structure prediction of glucagon-like peptide 2 receptor using homology modelling", J. Chosun Natural Sci., Vol. 10, pp. 119-124, 2017.