
J. lnf. Commun. Converg. Eng. 16(2): 106-113, Jun. 2018 Regular paper

106

Received 14 March 2018, Revised 12 June 2018, Accepted 14 June 2018
*Corresponding Author Hee-Cheol Kim (heeki@inje.ac.kr, Tel: +82-55-320-3720)
Department of Computer Engineering & Institute of Digital Anti-Aging Healthcare (IDA), Inje University, 197, Inje-ro, Gimhae 50834, Korea.

https://doi.org/10.6109/jicce.2018.16.2.106 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

Text Categorization with Improved Deep Learning Methods

Xingfeng Wang1,2 and Hee-Cheol Kim3* , Member, KIICE

1Information Engineering College, Eastern Liaoning University, Dandong 118000, China
2Department of Computer Engineering, Inje University, Gimhae 50834, Korea
3Department of Computer Engineering & Institute of Digital Anti-Aging Healthcare (IDA), Inje University, Gimhae 50834, Korea

Abstract

Although deep learning methods of convolutional neural networks (CNNs) and long-/short-term memory (LSTM) are widely

used for text categorization, they still have certain shortcomings. CNNs require that the text retain some order, that the pooling

lengths be identical, and that collateral analysis is impossible; In case of LSTM, it requires the unidirectional operation and the

inputs/outputs are very complex. Against these problems, we thus improved these traditional deep learning methods in the

following ways: We created collateral CNNs accepting disorder and variable-length pooling, and we removed the input/output

gates when creating bidirectional LSTMs. We have used four benchmark datasets for topic and sentiment classification using the

new methods that we propose. The best results were obtained by combining LTSM regional embeddings with data convolution.

Our method is better than all previous methods (including deep learning methods) in terms of topic and sentiment classification.

Index Terms: CNN, Disorder, LSTM, Text categorization

I. INTRODUCTION

Text categorization assigns predefined classifications to

documents written in natural languages; several forms of cat-

egorization can handle a variety of documents detecting top-

ics and spam [1], the sentiments [2, 3] of product/movie

reviews, and prediction of trends [4]. Most use traditional

methods for text categorization; the models include naïve

Bayes, support vector machines (SVM), k-nearest network

(KNN), and newer methods [5].

In 1998, McCallum and Nigam [6] compared two naïve

Bayes text classifications. The multinomial model was

almost always better than the multi-variate Bernoulli model,

reducing average error by 27%. In 2001, Soucy and Mineau

[7] showed that a simple KNN algorithm was 5% points bet-

ter than a naïve Bayes model. The SVM, the traditional

method, has attracted much attention. In 1999, Joachims [8]

introduced a transductive SVM method, which averaged 10

percentage points higher than a KNN method.

The traditional methods are seldom >80% accurate. Today,

deep learning—via convolutional neural networks (CNNs)

and long-/short-term memory (LSTM)—is often used for

text categorization.

CNN usually deals with two-dimensional (2D) structures,

such as images, computing a unit for each region. However,

text categorization is a 1D problem; it is necessary to solve

the word sequence and use the convolution layer to deal with

small text regions. Text categorization using CNNs is popu-

lar [9]; the first layer searches a table and converts sentences

to word vectors. We previously used a CNN to train word

vectors and used other methods to learn from additional

large corpora [10]. In other words, CNNs have many limita-

tions. Therefore, we prefer other methods. Here, we apply a

CNN directly to high-dimensional vectors; we do not employ

https://orcid.org/0000-0002-5399-7647

Text Categorization with Improved Deep Learning Methods

107 http://jicce.org

word embedding. We use a graphics processing unit (GPU)

to perform computations and handle sparse high-dimensional

data, improving accuracy, accelerating training and predic-

tion, and simplifying the system. Although a CNN could the-

oretically deal with natural language (text), CNNs are not

designed for such inputs. CNNs usually accept dense inputs;

each value is important, and most inputs are not zero. It is

challenging to work with text data; we address this with the

aid of LSTM, which is a recurrent neural network (RNN)

[9]. LSTM can deal with both images and text (word

sequences), recognizing embedded sequences. Compared to

traditional recurrent networks, LSTM affords two advan-

tages: a shorter learning time and better feasibility. LSTM

can handle text of variable size.

Text categorization using LSTM [11] is complex, reducing

training efficiency; we thus simplify the model. Our new

method affords higher accuracy and more rapid training.

Both our LSTM and CNN models are better than traditional

methods. Our results optimize text categorization; we use

text regions to establish higher standards than would be pos-

sible using isolated words. Thus, as revealed by tests using

four benchmark datasets, our regional embeddings were bet-

ter than the traditional embeddings.

The remainder of this paper is structured as follows. Sec-

tion II describes the models and methods in preliminary

terms (subsection A); subsections B and C describe text cat-

egorization using a CNN and LSTM, respectively. Section

III contains the results; subsection A describes the experi-

mental environment and processes; subsection B describes

the use of a CNN for topic and sentiment classification and

subsection C contains the LSTM data; we used four datasets

to facilitate direct comparisons among the CNN, the LSTM,

and traditional methods. Section IV summarizes our conclu-

sions and describes areas for future research.

II. MODEL AND METHODS

A. Preliminary

CNNs were designed for image classification; we thus first

explain how a CNN recognizes images. LSTM is more

appropriate for natural language processing; we next intro-

duce the foundations of LSTM.

1) CNN and Image Analysis

For Fig. 1, the computer sees an array of pixel values

rather than the image, and the resolution varies [12]. In the

present case, the computer sees a 32×32×3 array of numbers.

One pixel corresponds to a number from 0 to 255. The com-

puter then calculates image probabilities to define the class

including the picture. Here, dog is associated with an 80%

probability, cat with 15% probability, and bird with 5% prob-

ability.

The computer distinguishes different pictures. When we

see a picture of a cat, we search for features such as four

legs or whiskers. The computer looks for low-level features

(edges and curves) and then more abstract concepts estab-

lished by the convolutional layers.

2) LSTM

LSTM is a special form of RNN that solves long-term

dependency problems not addressed by conventional normal

RNNs (Hochreiter and Schmidhuber [11], and later develop-

ments). LSTM affords excellent performance when used to

address many problems; LSTM remembers information on a

long-term basis. All RNNs require chains to interrogate NN

modules. In a standard RNN, the repeating module is very

simple, such as a single tanh layer. LSTM has a more com-

plex structure. A normal RNN has a single neural network

layer; LSTM features four interacting layers [13] (Fig. 2).

In the illustration, the entire vector is carried by each line

from a single node output to the inputs of other nodes. The

pink circles reflect operations, such as vector rises, as the

NN layers learn the yellow boxes. Line combinations reflect

a series of related transactions; line branching reflects the

copying of content to different locations.

3) Using Pre-trained Word Embedding

“Word embedding” is a group of natural language- pro-

cessing techniques mapping semantic meaning to geometric

space [14]. We search a dictionary to assign a numeric value

to every vocabulary, such that the L2 distance between any

two vectors reflects the semantic relationship between two

correlated vocabularies. These vectors constitute a geometric

Fig. 1. The human and computer views. From Adit Deshpande’s blog [12].

Fig. 2. An LSTM containing four interacting layers.

J. lnf. Commun. Converg. Eng. 16(2): 106-113, Jun. 2018

https://doi.org/10.6109/jicce.2018.16.2.106 108

space termed the “embedding space”. For example, “mango”

and “penguin” are vocabularies that are semantically very

different; a logical embedding space will express them as

widely separated vectors. But “love” and “marriage” are cor-

relative vocabularies; they should be closely embedded. In

theory, in a good embedding space, the vector path from

“love” to “marriage” will precisely describe the semantic

relationship between these two notions. In this circumstance,

the relationship is “why x occurs”; one would hope that the

vector love-to-marriage would explain this. Fundamentally,

we require the vectorial characteristic: marriage + (why x

occurs) = love. Next, we can use such vectors to answer

questions. For example, we define a new vector “hurt”, and

explore its relationships; we should capture: hurt + (why x

occurs) = hit, thus a reply to “why hurt occurs?”.

We can compute word-embedding. When we explore a

text corpus, we can count and analyze databases using

dimensionality reduction techniques, employing a form of

neural network exploiting the “word2vec” technique or

matrix factorization.

B. The Use of CNN for Text Categorization

1) A Deeper CNN

We apply a CNN to text data. Kim [15] employed multiple

filters implemented using a Keras Merge Layer (Fig. 3).

We used 128 filters (size 5) and maximum pooling of 5

and 35 (Fig. 4).

2) Text Categorization using a Sequential CNN

We have a document D = (w1,w2,…) and a vocabulary V.

The CNN needs to preserve the word order when data are

input. However, during text categorization using CNN, we

can regard each word as a pixel, and D then equals |D|×1

pixel; we can also view |V| as a channel. Thus, we can use a

CNN to deal with text as if it were an image. As a simple

example, consider the vocabulary V = {“don’t”, “hate”, “her”,

“like”, “you”} and a document D = “you like her”. We

obtain a document vector x = [00001|00010|00100]T.

When a CNN is used to deal with images, we need to

select the region size in advance; when that size is p, we can

use p|V| to express region vectors. Using the example above,

suppose p = 2 and stride=1, we obtain two regions “you like”

and “like her” (Table 1).

As in image analysis, the text vector is translated to a fea-

ture vector. The convolution layer embeds text regions into

low-dimensional vector spaces. However, a sequential CNN

features a neural network, a convolution layer, and the region.

3) Use of a Disordered CNN for Text Evaluation

Sequential CNNs perform well, but they have one draw-

back. During imaging, only three RGB channels are required,

but, for text, the channel number is |V| (size of vocabulary),

which is large. Thus, when p is also large, the number p|V|

(the weight vectors) will be very large, rendering training

impractical. Thus, we use a different method; we ignore the

sequence of the vocabulary, thus changing the region vectors

from dimension p|V| to dimension |V| (Table 2).

Thus, fewer parameters are studied. Disordered convolu-

tion lies between bow vectors and sequential convolution.

Word order is lost in only small regions.

Fig. 4. A convolutional structure for text categorization.

Table 1. The document vectors of a sequential CNN

don’t hate her like you

r0(x)
you 0 0 0 0 1

like 0 0 0 1 0

r1(x)
like 0 0 0 1 0

her 0 0 1 0 0

Table 2. Document vectors of the disordered CNN

don’t hate her like you

r0(x) you like 0 0 0 1 1

r1(x) like her 0 0 1 1 0Fig. 3. A convolutional network with multiple filters.

Text Categorization with Improved Deep Learning Methods

109 http://jicce.org

4) Pooling Layer for Text Categorization

The pooling layer must sometimes change. Unlike images

of a fixed size, documents are variable in length. As the

stride is fixed, the convolution layer output must vary in

length (Fig. 5).

The convolution layer output may vary in length after

standard pooling. Next, the variable will be output to another

convolution layer. Finally, the fully connected layer will

receive inputs of variable length; this is inappropriate, as

these inputs must be of fixed length. Thus, we dynamically

control the pooling region size to ensure that the inputs to

the fully connected layer are of a fixed length.

5) A Collateral CNN: An Extension

Often, text categorization is performed using CNNs, which

commonly have only two convolution and corresponding

pooling layers. To improve model accuracy, we explored a

collateral CNN featuring two or more convolution layers in

parallel. Using this architecture, we found that the convolu-

tion-pooled pairs effectively dealt with differently sized

regions, developing different vectors for each region but

ensuring that the vectors to the final fully connected layer

were of the same length.

C. LSTM for Text Categorization

1) Text Classification using LSTM

Next, we explore the text categorization framework “region

embedding + pooling”. We used an available region-embed-

ding method [16] and found that LSTM was efficient. As no

additional data or algorithms were required, we implemented

end-to-end supervision. We then simplified the model, accel-

erating training and improving accuracy.

We encoded all text information in the last output of the

RNN before running a feed-forward classification network

very similar to a neural translation machine employing sequence-

to-sequence learning (Fig. 6).

Also, we used bidirectional LSTM and concatenated both

of the final outputs (Fig. 7).

2) Simplifying Sub-problems of the Pooling Simpli-

fying

First, we simplified the “region embedding + pooling” model.

With LSTM, it is difficult to use a single vector to represent

the entire document. We changed certain text regions to

allow representation as simple vectors (Fig. 8).

Thus, we expressed each time step as ht, and created a

document vector by aggregating by pooling layer. No matter

how many words are included, if the document is not fin-

ished, the LSTM must remember relevant information. Thus,

we took a different route to solve the problem simply. We

used segments smaller than phrases or sentences, with a

focus on representing concepts, and allowed the forget gate

to discard old data.

3) Increasing Training Speed

To simplify the sub-problem, we accelerated training in

the pooling layer. We used chopping, and we allowed LSTM

to embed text regions instead of documents. After this trans-

formation, the sequence (from the beginning to the end of

the document) is not important. We separated each document

into fragments of a fixed length, and we assumed that these

segments were individual documents, which could be han-

Fig. 5. The convolution layer for text of variable length.

Fig. 6. The standard sequence-to-sequence model.

Fig. 7. The LSTM structure for text categorization.

Fig. 8. LSTM featuring pooling.

J. lnf. Commun. Converg. Eng. 16(2): 106-113, Jun. 2018

https://doi.org/10.6109/jicce.2018.16.2.106 110

dled simultaneously. This accelerated training and improved

accuracy.

4) Elimination of Input and Output Gates

When we eliminated the input and output gates, accuracy

was not affected. In other words, the pooling layer was

redundant and the time and memory requirements halved.

This is because the input and output gates eliminate irrele-

vant information, but our max-pooling method filters noise,

allowing removal of the gates. The LSTM formulation sim-

plifies to:

(1)

(2)

⊙ , (3)

This is equivalent to rendering all it and ot constant. The

model is mentally analogous to the gated recurrent units

method [17] but is more straightforward, thus with fewer

gates.

5) The Use of Two-Way LSTM to Improve Accuracy

The changes described above greatly reduced the time and

memory required for training. If an opposite-direction pool-

ing layer were to be added, what might happen? We coupled

forward and backward LSTMs, which further improved

accuracy.

III. RESULTS

A. Experimental Environment and Processes

1) Hardware Requirements

Our software runs only on GPUs, such as the Tesla K20.

Testing was performed on a Tesla M2070 and a Quadro

M6000.

2) Software Requirements

The makefile uses gcc; CUDA must be installed and

CUDA v7.5 or higher is recommended. We do not know

whether versions earlier than 5.0 work. Testing employed

CUDA v7.5 and Linux. In principle, the code should com-

pile and run in other systems as well (e.g., Windows), pro-

vided that a GPU and an appropriate version of CUDA are

installed. However, we do not guarantee this. Optimally, Perl

is required.

3) Experiments

We commence with a simple case lacking unsupervised

embeddings. Using the context, the training and testing of

neural networks feature the following steps:

a. Generate a vocabulary file from training data. Input a

tokenized text file.

b. Generate input files for NN training, including a region

file (containing features in the form of sparse region

vectors); a target file (containing classification label

information); and a word-mapping file (showing the

mapping between words and the dimensions of the

sparse region vectors).

c. Train the NN while (optionally) measuring classification

error rates using validation and/or test data. Trained

NNs can be saved.

d. Apply the trained NN to test data.

B. Experiments with the CNN

We explore two kinds of tasks, topic and sentiment classi-

fication.

1) Datasets and Data Preprocessing

(a) The Internet Movie Database (IMDB): movie reviews

IMDB dataset [18] is used for sentiment categorization.

Movie reviews are evaluated as positive or negative. The

dataset contains 25,000 reviews (training and test sets). First,

we prepared the raw data; we stamped the text so that affec-

tive symbols were treated in advance and changed upper

case to lower case.

(b) Elec: electronics product reviews

Elec contains reviews of electronic products and is a part

of the Amazon review dataset [19]. Electronics are very dif-

ferent from movies; this is why we chose this dataset. As for

IMDB, half the reviews are positive and half negative. We

used 25,000 reviews for testing and more for training. Data

pretreatment was essentially the same as that for IMDB.

(c) Reuters Corpus Volume 1 (RCV1): topic classification

RCV1 is a Reuters news article corpus described in [20].

There are 103 topic categories; a document might link to

several topics. This affords the opportunity to optimize algo-

rithms. There are two kinds of category: single-label (about

55) and multiple-label. Dataset pretreatment is rather com-

plex, and stopwords must be dealt with in advance using

RCV1.

(d) 20-Newsgroups (20NG)

29NG [21] includes about 20,000 documents divided into

20 different newsgroups. The contents include subject lines,

signature files, quotes, and other texts.

2) Performance Results

Table 3 lists various classification methods, including our

new methods, which outperformed all earlier methods.

ft σ W f()xt U f()ht 1–
b f()+ +()=

ut tanh W f()xt U f()ht 1–
b u()+ +()=

ct ut ft+= ct 1–
ht tanh ct()=

Text Categorization with Improved Deep Learning Methods

111 http://jicce.org

In terms of the convolution layer, as IMDB and Elec are

used to classify sentiments; we set the region size to 3, the

stride to 1, the number of weight vectors to 1,000, and max-

pooling on. The sequential CNN outperformed the disordered

CNN, which, in turn, outperformed the traditional methods;

the collateral disorder CNN was optimal. Thus, when the region

size is small and max-pooling is chosen, a short phrase con-

veys a strong sentiment. The high score means that we can

ignore the remainder of the review; sentiment classification

is already effective.

As RCV1 and 20NG classify topics, we set the region size

to 20, the stride to variable (≥2), the weight vector number

to 1,000; and chose average-pooling. The disordered CNN

outperformed the sequential CNN, which, in turn, outper-

formed traditional methods. Thus, for topic classification, a

large context is more predictive than small segments; reten-

tion of word sequence in each region is important, but the

use of fewer parameters is even more important, affording

better results.

Next, we explored the collateral CNN. When applied to

IMDB, this model (with two sequential convolution layers)

outperformed sequential CNN. The extra neurons enhanced

performance compared to that of the best-performing benchmark

and the best former supervised result. Collateral sequential

CNN yields good results although the predictive text regions

vary in length. When the collateral disorder CNN was applied

to IMDB, the error rate was only 8.21%; the model con-

tained three collateral layers, including two sequential con-

volution layers, each with 1,000 neurons, and the entire

document in a single layer with 20 neurons; a normal vector

served as the input to the computation unit. However, use of

the collateral disorder CNN to evaluate Elec yielded a differ-

ent result; the best performance (the error rate is 7.68%) was

afforded by changing the region sizes of the sequential con-

volution layers to 3 and 4. Thus, shorter word orders, a larger

window in the global context, a disordered convolution layer

evaluating n-gram words, and a larger localized region size,

were all important.

Finally, we compared the various baseline methods of sen-

timent and topic categorization. If vocabulary were reduced,

sentiment classification performance would fall, but this

would not be the case for topic categorization, whether bi- or

tri-grams are used.

3) Why is the CNN Effective?

Fig. 9 shows several text regions found using a sequential

CNN to evaluate Elec. The structure includes one convolu-

tion layer of region size 3 and 1,000 neurons. After transmis-

sion by each layer, the top layer contains 1,000 vectors. The

negative class in the top layer can be expressed using Ni (the

ith highest weight) and the positive class employing Pi (the

ith highest weight).

In traditional classification methods [22], only training

data appear in test data, facilitating accurate prediction.

However, the CNN is different; Fig. 10 show the test set of

text regions; the test data were not in the training data (even

in part). For example, the training data include the phrase

“am extremely satisfied”, but only the phrase “am entirely

satisfied” appears in the test data; these phrases are very dif-

ferent. It is necessary to resolve this difference, but the

sequential CNN can operate successfully even if the phrases

are not identical. In another words, the CNN uses words

effectively when traditional methods fail.

C. LSTM Experiments

We used four datasets (IMDB, Elec, RCV1, and 20-news-

group) to directly compare the CNN, LSTM, and traditional

Table 3. Error rates (%) of our methods and earlier methods

 IMDB Elec RCV1 20NG

KNN 12.43 11.45 12.97 17.86

SVM 11.17 10.48 12.67 17.79

Neural network 10.08 10.06 12.52 17.29

Earlier CNN 9.66 9.43 10.75 15.42

Disordered CNN 9.17 8.90 9.84 13.73

Sequential CNN 8.91 8.16 10.48 15.72

Collateral sequential CNN 8.57 8.01 - -

Collateral disordered CNN 8.21 7.68

Fig. 9. Training set used for text region prediction.

Fig. 10. Examples of predictive text regions in the testing set. These were

not present (either entirely or partially) in the training set.

J. lnf. Commun. Converg. Eng. 16(2): 106-113, Jun. 2018

https://doi.org/10.6109/jicce.2018.16.2.106 112

methods. The datasets are summarized in Table 4.

We evaluated both sentiment classification (IMDB and

Elec datasets) and topic classification (RCV1 and 20NG

datasets). We first converted the data to lower-case letters

and reduced the training data to the most frequent 30K

words, reducing the computational burden. We set a Gauss-

ian distribution with a zero mean, a standard deviation of

0.01, SGD optimization of momentum, and RMSProp to

optimize acceleration [23].

The parameters can be varied based on performance; for

example, various learning rates can be compared and an

optimal rate selected. During pooling, we selected the

parameters that best reflected the exploitation capacities of

the data. For the IMDB and Elec datasets, we selected max-

pooling with k=1. For the RCV1 dataset, we selected aver-

age-pooling with k=10. For the 20NG dataset, we selected

max-pooling with k=10.

Table 5 shows the error rates; we did not use unlabeled

data or engage in pre-training. The CNN featured a single

convolution layer with 1,000 feature maps (thus, each loca-

tion generated 1,000 dimensional vectors). We used a bidi-

rectional LSTM in which each direction delivered a 500-

dimensional vector at each time step. LSTM afforded certain

advantages. First, LSTM used variably sized embedding

regions [24]; the region size was fixed in the CNN. Second,

although a CNN can feature multiple convolution layers with

distinct region sizes, the LSTM outcomes were nonetheless

better, perhaps because of the longer word sequences used

by LSTM [25]. In terms of training speed, the CNN was

faster than the LSTM, because region embedding is simple

in the CNN. Thus, in the future, we will consider combining

the two types of region embedding.

IV. DISCUSSION AND CONCLUSIONS

We found that our CNN and LSTM models were better

than the traditional methods. Also, we improved existing

deep learning methods as follows:

• Use of a disordered CNN to evaluate text. Fewer param-

eters must be learned; word order is lost only within

small regions.

• Variable pool sizes for CNN text. The outputs to the

fully connected top layer must be of a fixed length. As

the number of pooling units is fixed, we dynamically

determined pooling region size. We ensured that all data

were covered, without overlaps.

• Use of a collateral CNN. We used several types of

embedding for small text regions. As the various CNNs

engage in mutual assistance, model accuracy was improved.

• Removal of input/output gates. On LSTM pooling

LSTM, if the input and output gates were removed,

model accuracy would not be compromised, but the

times and memories required for training and testing

would be halved.

• Bidirectional LSTM affords improved accuracy. Bidirec-

tional LSTM reduces the time and memory required for

training and improves predictive accuracy.

Using the benchmark datasets, our results were better than

previous results. However, our methods have certain disad-

vantages, principally suboptimal efficiency. Because we sim-

plified the training methods, the training times became

longer than those of traditional methods, including deep

learning methods. Therefore, we plan to further explore

sophisticated deep learning methods such as Deep Pyramid.

We hope that we can use these methods to improve classifi-

cation accuracy and efficiency.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Trade,

Industry and Energy (MOTIE) of Korea through the educa-

tion program for creative and industrial convergence (Grant

No. N0000717).

REFERENCES

[1] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A Bayesian

approach to filtering junk e-mail,” in Proceedings of AAAI’98

Workshop on Learning for Text Categorization, Madison, WI, 1998.

[2] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment

classification using machine learning techniques,” in Proceedings of

the ACL-02 Conference on Empirical Methods in Natural Language

Processing, Philadelphia, PA, pp. 79-86, 2002. DOI: 10.3115/1118693.

1118704.

[3] B. Pang and L. Lee, “Opinion mining and sentiment analysis,”

Table 4. Average and maximum lengths of documents and the class

numbers

Training

data

Test

data

Average

length

Maximum

length

Class num-

ber

IMDB 30,000 20,000 247 4K 2

Elec 30,000 20,000 138 5K 2

RCV1 17,219 53,747 199 11K 55

20NG 12,354 7,617 237 10K 20

Table 5. Error rates of various methods (%)

IMDB Elec RCV1 20NG

KNN 12.43 11.45 12.97 17.47

SVM 11.17 10.48 12.67 16.85

Previous CNN 9.34 8.31 10.53 15.92

Previous LSTM 8.85 8.06 11.14 14.01

Our CNN 8.89 7.84 9.96 14.64

Our LSTM 8.32 7.55 10.67 13.53

Text Categorization with Improved Deep Learning Methods

113 http://jicce.org

Foundations and Trends in Information Retrieval, vol. 2, no. 1-2, pp.

1-135, 2008. DOI: 10.1561/1500000011.

[4] B. Li, N. Chen, J. Wen, X. Jin, and Y. Shi, “Text categorization

system for stock prediction,” International Journal of u- and e-

Service Science and Technology, vol. 8, no. 2, pp. 35-44, 2015. DOI:

10.14257/ijunnesst.2015.8.2.04.

[5] X. Wang and H. C. Kim, “New feature selection method for text

categorization,” Journal of Information and Communication Con-

vergence Engineering, vol. 15, no. 1, pp. 53-61, 2017. DOI: 10.6109/

jicce.2017.15.1.53.

[6] A. McCallum and K. Nigam, “A comparison of event models for

naïve Bayes text classification,” in Proceedings of AAAI’98 Workshop

on Learning for Text Categorization, Madison, WI, 1998.

[7] P. Soucy and G. W. Mineau, “A simple KNN algorithm for text

categorization,” in Proceedings IEEE International Conference on

Data Mining, San Jose, CA, pp. 647-648, 2001. DOI: 10.1109/

ICDM.2001.989592

[8] T. Joachims, “Transductive inference for text classification using

support vector machines,” in Proceedings of the 16th International

Conference on Machine Learning, Bled, Slovenia, pp. 200-209, 1999.

[9] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural

networks for text classification,” in Proceedings of the 29th AAAI Con-

ference on Artificial Intelligence, Austin, TX, pp. 2267-2273, 2015.

[10] J. Weston, S. Chopra, and K. Adams, “#tagspace: semantic em-

beddings from hashtags,” in Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing, Doha, Qatar,

pp. 1822-1827, 2014.

[11] S. Hochreiter and J. Schmidhuder, “Long short-term memory,”

Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997. DOI: 10.1162/

neco.1997.9.8.1735.

[12] A. Deshpande, “A beginner's guide to understanding convolutional

neural networks,” 2016 [Internet], Available: https://adeshpande3.

github.io/adeshpande3.github.io/A-Beginner's-Guide-To-

Understanding-Convolutional-Neural-Networks/.

[13] C. Olah, “Understanding LSTM networks,” 2015 [Internet], Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[14] L. Xu, K. Liu, S. Lai, and J. Zhao, “Product feature mining: Semantic

clues versus syntactic constituents,” in Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics,

Baltimore, MD, pp. 336-346, 2014.

[15] Y. Kim, “Convolutional neural networks for sentence classification,”

in Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, Doha, Qatar, pp. 1746–1751, 2014.

[16] K. Tai, S. Richard, and M. Christopher, “Improved semantic repre-

sentations from tree-structured long short-term memory networks,”

in Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics, Beijing, China, pp. 1556-1566, 2015.

[17] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, Y. (2014). “Learning phrase representations

using RNN encoder-decoder for statistical machine translation,” in

Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, Doha, Qatar, pp. 1724-1734, 2014.

[18] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C.

Potts, “Learning word vectors for sentiment analysis,” in Proceedings

of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, Portland, OR, pp. 142-

150, 2011.

[19] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:

understanding rating dimensions with review text,” in in Proceedings

of the 7th ACM Conference on Recommender Systems, Hong Kong,

China, pp. 165-172, 2013.

[20] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: a new

benchmark collection for text categorization research,” Journal of

Machine Learning Research, vol. 5. pp. 361-397, 2004.

[21] J. Gao, P. Pantel, M. Gamon, X. He, and D. Li, “Modeling inter-

estingness with deep neural networks,” in Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing,

Doha, Qatar, pp. 2-13, 2014.

[22] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional

neural network for modeling sentences,” in Proceedings of the 52nd

Annual Meeting of the Association for Computational Linguistics,

Baltimore, MD, pp. 655-665, 2014.

[23] Q. Le and T. Mikolov, “Distributed representations of sentences and

documents,” in Proceedings of the 31st International Conference on

International Conference on Machine Learning, Beijing, China, pp.

1188-1196, 2014.

[24] P. Le and W. Zuidema, “Compositional distributional semantics with

long short-term memory,” in Proceedings of the 4th Joint Con-

ference on Lexical and Computational Semantics, Denver, CO, pp.

10-19, 2015.

[25] X. Zhu, P. Sobhani, and H. Guo, “Long short-term memory over

recursive structures,” in Proceedings of the 32nd International

Conference on Machine Learning, Lille, France, pp. 1604-1612, 2015.

Xingfeng Wang
received the B.E. degree in application of electronic technology from Liaoning Normal University, China, in 1998 and the

M.E. degree in computer technology from Dalian University of Technology, China, in 2009. He is a university teacher at

Information Engineering College, Eastern Liaoning University, China and currently studies for Ph.D. at Department of

Computer Engineering, Inje University, Korea. He has interests in the areas of data mining, neural network, and deep

learning. He has published more than 10 papers in these areas.

Hee-Cheol Kim
received the M.S. degree in computer science from Sogang University, Korea, in 1991, and the Ph.D. degree in computer

science from Stockholm University, Sweden in 2001. He is a professor at Department of Computer Engineering, Inje

University, Korea. He has interests in the areas of human computer interaction, software engineering, and u-healthcare.

He has published more than 100 papers in these areas.

