References
- Moore, E. R., Tindall, B. J., Dos Santos, V. A. M., Pieper, D. H., Ramos, J. L. and Palleroni, N. J. (2006) The Prokaryotes. Springer, New York, pp. 646-703.
- Gamini, S., Jayatilake, M. P., Thornton, A. C., Leonard, J. E. and Grimwade, B. J. (1996) Baker. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 59: 293-296. https://doi.org/10.1021/np960095b
-
Garba, L., Ali, M., Shukuri, M., Oslan, S. N., Abd, R. and Raja, N. Z. R. (2016) Molecular cloning and functional expression of
${\alpha}\;{\Delta}9$ -fatty acid desaturase from an antarctic Pseudomonas sp. A3. PLoS One 11: e0160681/1-e0160681/17. - Hirano, S. S. and Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64: 624-653. https://doi.org/10.1128/MMBR.64.3.624-653.2000
- Wang, B., Waters, A, L., Sims, J. W., Fullmer, A., Ellison, S. and Hamann, M. T. (2013) Complex Marine Natural Products as Potential Epigenetic and Production Regulators of Antibiotics from a Marine Pseudomonas aeruginosa. Microb. Ecol. 65: 1068-1075. https://doi.org/10.1007/s00248-013-0213-4
- Bultel-Ponce, V., Berge, J.-P., Debitus, C., Nicolas, J.-L. and Guyot, M. (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. Mar. Biotechnol. 1: 384-390. https://doi.org/10.1007/PL00011792
- Park, K. S., Do, H., Lee, J. H., Park, S. I., Kim, E. J., Kim, S.-J., Kang, S.-H. and Kim, H. J. (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiology 64: 286-296. https://doi.org/10.1016/j.cryobiol.2012.02.014
- Kim, S. J. and Yim, J. H. (2007) Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J. Microbiol. 45: 510-514.
- Anhe, F. F.; Varin, T. V., Le Barz, M., Pilon, G., Dudonne, S., Trottier, J., St-Pierre, P., Harris, C. S., Lucas, M., Lemire, M., Dewailly, E., Barbier, O., Desjardins, Y., Roy, D. and Marette, A. (2018) Arctic berry extracts target the gut-liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice. Diabetologia 61: 919-931. https://doi.org/10.1007/s00125-017-4520-z
- Kallio, H. P. (2018) Historical Review on the Identification of Mesifurane, 2,5-Dimethyl-4-methoxy-3(2H)-furanone, and Its Occurrence in Berries and Fruits. J. Agric. Food Chem. 66: 2553-2560. https://doi.org/10.1021/acs.jafc.8b00519
- Baek, K., Lee, Y. M., Hwang, C. Y., Park, H., Jung, Y. J., Kim, M. K., Hong, S. G., Kim, J. H. and Lee, H. K. (2015) Psychroserpens jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment. Int. J. Syst. Evol. Microbiol. 65: 183-188. https://doi.org/10.1099/ijs.0.069740-0
- Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Boil. Evol. 4: 406-425.
- Kostova, I., Ivanova, A., Mikhova, B. and Klaiber, I. (1999) Alkaloids and coumarins from Ruta graveolens. Monatsh. Chem. 130: 703-707.
- Bultel-Ponce, V., Berge, J.-P., Debitus, C., Nicolas, J.-L. and Guyot, M. (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. Mar. Biotechnol. 1: 384-390. https://doi.org/10.1007/PL00011792
- Cho, J. Y. (2012) Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds. Biosci. Biotechnol. Biochem. 76: 1452-1458. https://doi.org/10.1271/bbb.120102
- Giri, R., Lam, J. K. and Yu, J.-Q. (2010) Synthetic Applications of Pd(II)-Catalyzed C-H Carboxylation and Mechanistic Insights: Expedient Routes to Anthranilic Acids, Oxazolinones, and Quinazolinones. J. Am. Chem. Soc. 132: 686-693. https://doi.org/10.1021/ja9077705
- Kelleher, J. M., McAuliffe, M. T., Moynihan, H. A. and Mullins, N. D. (2007) Studies on the preparation and crystal polymorphism of 2-acetamidobenzamide and related compounds. ARKIVOC 209-266.
- Sayed, K. E., Al-Said, M. S., El-Feraly, F. S. and Ross, S. A. (2000) New quinoline alkaloids from Ruta chalepensis. J. Nat. Prod. 63: 995-997. https://doi.org/10.1021/np000012y
- Zhao, N., Li, Z.-L., Li, D.-H., Sun, Y.-T., Shan, D.-T., Bai, J., Pei, Y.-H., Jing, Y.-K. and Hua, H.-M. (2015) Quinolone and indole alkaloids from the fruits of Euodia rutaecarpa and their cytotoxicity against two human cancer cell lines. Phytochemistry 109: 133-139. https://doi.org/10.1016/j.phytochem.2014.10.020
- Kakinuma, N., Iwai, H., Takahashi, S., Hamano, K., Yanagisawa, T., Nagai, K., Tanaka, K., Suzuki, K., Kirikae, F., Kirikae, T. and Nakagawa, A. (2000) Quinolactacins A, B and C: novel quinolone compounds from Penicillium sp. EPF-6. J. Antibiot. 53: 1247-1251. https://doi.org/10.7164/antibiotics.53.1247
- Evans, J. R., Napier, E. J. and Fletton, R. A. (1978) G1499-2, a new quinoline compound isolated from the fermentation broth of Cytophaga johnsonii. J. Antibiot. 31: 952-958. https://doi.org/10.7164/antibiotics.31.952
- Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurai, T., Oohusa, T., Hara, Y. and Chihara, M. (1998) An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistry 27: 731-735.