DOI QR코드

DOI QR Code

Comparison of Contrast-Enhanced T2 FLAIR and 3D T1 Black-Blood Fast Spin-Echo for Detection of Leptomeningeal Metastases

  • Park, Yae Won (Department of Radiology, Ewha Womans University College of Medicine) ;
  • Ahn, Sung Jun (Department of Radiology, Yonsei University, College of Medicine)
  • Received : 2018.03.05
  • Accepted : 2018.05.15
  • Published : 2018.06.30

Abstract

Purpose: Imaging plays a significant role in diagnosing leptomeningeal metastases. However, the most appropriate sequence for the detection of leptomeningeal metastases has yet to be determined. This study compares the efficacies of contrast-enhanced T2 fluid attenuated inversion recovery (FLAIR) and contrast-enhanced 3D T1 black-blood fast spin echo (FSE) imaging for the detection of leptomeningeal metastases. Materials and Methods: Tube phantoms containing varying concentrations of gadobutrol solution were scanned using T2 FLAIR and 3D T1 black-blood FSE. Additionally, 30 patients with leptomeningeal metastases were retrospectively evaluated to compare conspicuous lesions and the extent of leptomeningeal metastases detected by T2 FLAIR and 3D T1 black-blood FSE. Results: The signal intensities of low-concentration gadobutrol solutions (< 0.5 mmol/L) on T2 FLAIR images were higher than in 3D T1 black-blood FSE. The T2 FLAIR sequences exhibited significantly greater visual conspicuity scores than the 3D T1 black-blood sequence in leptomeningeal metastases of the pial membrane of cistern (P = 0.014). T2 FLAIR images exhibited a greater or equal extent (96.7%) of leptomeningeal metastases than 3D T1 black-blood FSE images. Conclusion: Because of its high sensitivity even at low gadolinium concentrations, contrast-enhanced T2 FLAIR images delineated leptomeningeal metastases in a wider territory than 3D T1 black-blood FSE.

Keywords

References

  1. Grossman SA, Krabak MJ. Leptomeningeal carcinomatosis. Cancer Treat Rev 1999;25:103-119 https://doi.org/10.1053/ctrv.1999.0119
  2. Wasserstrom WR, Glass JP, Posner JB. Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer 1982;49:759-772 https://doi.org/10.1002/1097-0142(19820215)49:4<759::AID-CNCR2820490427>3.0.CO;2-7
  3. Kremer S, Abu Eid M, Bierry G, et al. Accuracy of delayed post-contrast FLAIR MR imaging for the diagnosis of leptomeningeal infectious or tumoral diseases. J Neuroradiol 2006;33:285-291 https://doi.org/10.1016/S0150-9861(06)77286-8
  4. Misaki K, Nakada M, Hayashi Y, et al. Contrast-enhanced fluid-attenuated inversion recovery MRI is useful to detect the CSF dissemination of glioblastoma. J Comput Assist Tomogr 2001;25:953-956 https://doi.org/10.1097/00004728-200111000-00020
  5. Mathews VP, Caldemeyer KS, Lowe MJ, Greenspan SL, Weber DM, Ulmer JL. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999;211:257-263 https://doi.org/10.1148/radiology.211.1.r99mr25257
  6. Terae S, Yoshida D, Kudo K, Tha KK, Fujino M, Miyasaka K. Contrast-enhanced FLAIR imaging in combination with pre- and postcontrast magnetization transfer T1-weighted imaging: usefulness in the evaluation of brain metastases. J Magn Reson Imaging 2007;25:479-487 https://doi.org/10.1002/jmri.20847
  7. Fukuoka H, Hirai T, Okuda T, et al. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. AJNR Am J Neuroradiol 2010;31:868-873 https://doi.org/10.3174/ajnr.A1937
  8. Tomura N, Narita K, Takahashi S, et al. Contrast-enhanced multi-shot echo-planar FLAIR in the depiction of metastatic tumors of the brain: comparison with contrast-enhanced spin-echo T1-weighted imaging. Acta Radiol 2007;48:1032-1037 https://doi.org/10.1080/02841850701499425
  9. Jackson EF, Hayman LA. Meningeal enhancement on fast FLAIR images. Radiology 2000;215:922-924 https://doi.org/10.1148/radiology.215.3.r00ap45922
  10. Park J, Kim J, Yoo E, Lee H, Chang JH, Kim EY. Detection of small metastatic brain tumors: comparison of 3D contrast-enhanced whole-brain black-blood imaging and MP-RAGE imaging. Invest Radiol 2012;47:136-141 https://doi.org/10.1097/RLI.0b013e3182319704
  11. Kammer NN, Coppenrath E, Treitl KM, Kooijman H, Dietrich O, Saam T. Comparison of contrast-enhanced modified T1-weighted 3D TSE black-blood and 3D MP-RAGE sequences for the detection of cerebral metastases and brain tumours. Eur Radiol 2016;26:1818-1825 https://doi.org/10.1007/s00330-015-3975-x
  12. Park J, Kim EY. Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: application to small brain metastases. Magn Reson Med 2010;63:553-561 https://doi.org/10.1002/mrm.22261
  13. Korosec FR, Grist TM, Polzin JA, Weber DM, Mistretta CA. MR angiography using velocity-selective preparation pulses and segmented gradient-echo acquisition. Magn Reson Med 1993;30:704-714 https://doi.org/10.1002/mrm.1910300608
  14. Norris DG, Schwarzbauer C. Velocity selective radio-frequency pulse trains. J Magn Reson 1999;137:231-236 https://doi.org/10.1006/jmre.1998.1690
  15. Nagao E, Yoshiura T, Hiwatashi A, et al. 3D turbo spin-echo sequence with motion-sensitized driven-equilibrium preparation for detection of brain metastases on 3T MR imaging. AJNR Am J Neuroradiol 2011;32:664-670 https://doi.org/10.3174/ajnr.A2343
  16. Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008;60:640-649 https://doi.org/10.1002/mrm.21680
  17. Takemoto K, Takano K, Abe H, et al. The new MRI modalities "BPAS and VISTA" for the diagnosis of VA dissection. Acta Neurochir Suppl 2011;112:59-65
  18. Kato Y, Higano S, Tamura H, et al. Usefulness of contrast-enhanced T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions in detection of small brain metastasis at 3T MR imaging: comparison with magnetization-prepared rapid acquisition of gradient echo imaging. AJNR Am J Neuroradiol 2009;30:923-929 https://doi.org/10.3174/ajnr.A1506
  19. Collie DA, Brush JP, Lammie GA, et al. Imaging features of leptomeningeal metastases. Clin Radiol 1999;54:765-771 https://doi.org/10.1016/S0009-9260(99)91181-9
  20. Freilich RJ, Krol G, DeAngelis LM. Neuroimaging and cerebrospinal fluid cytology in the diagnosis of leptomeningeal metastasis. Ann Neurol 1995;38:51-57 https://doi.org/10.1002/ana.410380111
  21. Straathof CS, de Bruin HG, Dippel DW, Vecht CJ. The diagnostic accuracy of magnetic resonance imaging and cerebrospinal fluid cytology in leptomeningeal metastasis. J Neurol 1999;246:810-814 https://doi.org/10.1007/s004150050459
  22. Ahn SJ, Suh SH, Lee KY, Kim JH, Seo KD, Lee S. Hyperintense vessels on T2-PROPELLER-FLAIR in patients with acute MCA stroke: prediction of arterial stenosis and perfusion abnormality. AJNR Am J Neuroradiol 2015;36:2042-2047 https://doi.org/10.3174/ajnr.A4423
  23. Ahn SJ, Lee KY, Ahn SS, Suh H, Kim BS, Lee SK. Can FLAIR hyperintense vessel (FHV) signs be influenced by varying MR parameters and flow velocities? A flow phantom analysis. Acta Radiol 2016;57:580-586 https://doi.org/10.1177/0284185115592060
  24. Ahn SJ, Chung TS, Chang JH, Lee SK. The added value of double dose gadolinium enhanced 3D T2 fluid-attenuated inversion recovery for evaluating small brain metastases. Yonsei Med J 2014;55:1231-1237 https://doi.org/10.3349/ymj.2014.55.5.1231
  25. Jeong HK, Oh SW, Kim J, Lee SK, Ahn SJ. Reduction of oxygen-induced CSF hyperintensity on FLAIR MR images in sedated children: usefulness of magnetization-prepared FLAIR imaging. AJNR Am J Neuroradiol 2016;37:1549- 1555 https://doi.org/10.3174/ajnr.A4723
  26. Siegal T, Sandbank U, Gabizon A, et al. Alteration of blood-brain-CSF barrier in experimental meningeal carcinomatosis. A morphologic and adriamycin-penetration study. J Neurooncol 1987;4:233-242 https://doi.org/10.1007/BF00150615
  27. Ludemann L, Grieger W, Wurm R, Wust P, Zimmer C. Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn Reson Imaging 2005;23:833-841 https://doi.org/10.1016/j.mri.2005.06.007
  28. Pintaske J, Martirosian P, Graf H, et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41:213-221 https://doi.org/10.1097/01.rli.0000197668.44926.f7
  29. van der Molen AJ, Bellin MF. Extracellular gadolinium-based contrast media: differences in diagnostic efficacy. Eur J Radiol 2008;66:168-174 https://doi.org/10.1016/j.ejrad.2008.02.010
  30. Ruff RL, Dougherty JH Jr. Complications of lumbar puncture followed by anticoagulation. Stroke 1981;12:879-881 https://doi.org/10.1161/01.STR.12.6.879
  31. Clarke JL, Perez HR, Jacks LM, Panageas KS, Deangelis LM. Leptomeningeal metastases in the MRI era. Neurology 2010;74:1449-1454 https://doi.org/10.1212/WNL.0b013e3181dc1a69
  32. Glass JP, Melamed M, Chernik NL, Posner JB. Malignant cells in cerebrospinal fluid (CSF): the meaning of a positive CSF cytology. Neurology 1979;29:1369-1375 https://doi.org/10.1212/WNL.29.10.1369

Cited by

  1. Diagnostic accuracy of MR imaging of patients with leptomeningeal seeding from lung adenocarcinoma based on 2017 RANO proposal: added value of contrast-enhanced 2D axial T2 FLAIR vol.149, pp.2, 2018, https://doi.org/10.1007/s11060-020-03617-2
  2. Utility of Contrast-Enhanced T2 FLAIR for Imaging Brain Metastases Using a Half-dose High-Relaxivity Contrast Agent vol.42, pp.3, 2021, https://doi.org/10.3174/ajnr.a6931
  3. Differentiation between Glioblastoma and Solitary Metastasis: Morphologic Assessment by Conventional Brain MR Imaging and Diffusion-Weighted Imaging vol.25, pp.1, 2018, https://doi.org/10.13104/imri.2021.25.1.23
  4. Signal intensity pattern of the normal oculomotor nerve on contrast-enhanced 3D FLAIR at 3.0 T MRI vol.34, pp.2, 2021, https://doi.org/10.1177/1971400920970918
  5. Improved Lesion Conspicuity with Contrast-Enhanced 3D T1 TSE Black-Blood Imaging in Cranial Neuritis: A Comparative Study of Contrast-Enhanced 3D T1 TSE, 3D T1 Fast-Spoiled Gradient Echo, and 3D T2 FL vol.42, pp.5, 2021, https://doi.org/10.3174/ajnr.a7025
  6. Role of contrast-enhanced FLAIR MRI in diagnosis of intracranial lesions vol.57, pp.1, 2018, https://doi.org/10.1186/s41983-021-00360-x