DOI QR코드

DOI QR Code

이단계 칼만필터를 활용한 사회기반 건설구조물의 3자유도 동적변위 계측 시스템

Two Stage Kalman Filter based Dynamic Displacement Measurement System for Civil Infrastructures

  • 정준연 (한국과학기술원 건설및환경공학과) ;
  • 최재묵 (한국과학기술원 건설및환경공학과) ;
  • 김기영 (한국과학기술원 건설및환경공학과) ;
  • 손훈 (한국과학기술원 건설및환경공학과)
  • Chung, Junyeon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Jaemook (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Kiyoung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Sohn, Hoon (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2018.04.17
  • 심사 : 2018.05.08
  • 발행 : 2018.06.30

초록

본 논문에서는 이단계 칼만필터를 활용한 구조물의 3 자유도 동적변위 계측 시스템을 소개한다. 개발 시스템은 센서 모듈, 베이스 모듈, 컴퓨테이션 모듈로 구성되어 있다. 센서 모듈은 100Hz 샘플주파수의 고정밀 가속도를 계측하는 포스피드백 가속도계와 10Hz의 샘플주파수의 저정밀도의 속도, 변위를 계측하는 저가의 RTK-GNSS로 구성되어 있다. 계측된 데이터는 LAN 케이블을 통하여 컴퓨테이션 모듈로 전송되고, 컴퓨테이션 모듈에서 이단계 칼만필터를 활용하여 100Hz 샘플주파수의 고정밀 변위를 실시간으로 산정한다. 개발 시스템의 변위 계측 정밀도를 검증하기 위해 미국, 캘리포니아에 위치한 San Francisco-Oaklmand Bay bridge 에서 현장 실험을 수행하였으며, 실험 결과 1.68mm RMS 오차를 보임을 확인하였다.

The paper presents a new dynamic displacement measurement system. The developed displacement measurement system consists of a sensor module, a base module and a computation module. The sensor module, which contains a force-balanced accelerometer and low-price RTK-GNSS, measures the high-precision acceleration with sampling frequency of 100Hz, the low-precision displacement and velocity with sampling frequency of 10Hz. The measured data is transferred to the computation module through LAN cable, and precise displacement is estimated in real-time with 100Hz sampling frequency through a two stage Kalman filter. The field test was conducted at San Francisco-Oaklmand Bay bridge, CA, USA to verify the precision of the developed system, and it showed the RMSE was 1.68mm.

키워드

참고문헌

  1. Calvi, G., Kingsley, G. (1995) Displacement-based Seismic Design of Multi-Degree-of-Freedom Bridge Structures, Earthq. Eng. & Struct. Dyn., 24, pp.1247-1266. https://doi.org/10.1002/eqe.4290240906
  2. Crowley, H., Pinho, R., Bommer, J.J. (2004) A Probabilistic Displacement-based Vulnerability Assessment Procedure for Earthquake Loss Estimation, Bull. Earthq. Eng., 2, pp.173-219. https://doi.org/10.1007/s10518-004-2290-8
  3. Dai, W., Huang, D., Cai, C. (2014) Multipath Mitigation Via Component Analysis Methods for GPS Dynamic Deformation Monitoring, GPS Solut., 18, pp.417-428. https://doi.org/10.1007/s10291-013-0341-9
  4. Gwashavanhu, B., Oberholster, A.J., Heyns, P.S. (2016) Rotating Blade Vibration Analysis using Photogrammetry and Tracking Laser Doppler Vibrometry, Mech. Syst. & Signal Process., 76, pp.174-186.
  5. Kim, K., Choi, J., Koo, G., Sohn, H. (2016) Dynamic Displacement Estimation by Fusing Biased Highsampling Rate Acceleration and Low-sampling Rate Displacement Measurements using Two-stage Kalman Estimator, Smart Struct. & Syst., 17(4), pp.647-667. https://doi.org/10.12989/sss.2016.17.4.647
  6. Kwon, N.Y., Kang, D.Y., Sohn, H (2016) Application of High-precision Accelerometer Made in Korea to Health Monitoring of Civil Infrastructures, J. Comput. Struct. Eng. Inst. Korea, 29(3), pp.277-284. https://doi.org/10.7734/COSEIK.2016.29.3.277
  7. Tariq, H., Takamori, A., Vetrano, F., Wang, C., Bertolini, A., Calamai, G., DeSalvo, R., Gennai, A., Holloway, L., Losurdo, G., Marka, S., Mazzoni, M., Paoletti, F., Passuello, D., Sannibale, V., Stanga, R. (2002) The Linear Variable Differential Transformer (LVDT) Position Sensor for Gravitational Wave Interferometer Lowfrequency Controls, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detect. & Assoc. Equip., 489, pp.570-576. https://doi.org/10.1016/S0168-9002(02)00802-1
  8. Wang, N., O'Malley, C., Ellingwood, B.R., Zureick, A.-H. (2011) Bridge Rating using System Reliability Assessment. I: Assessment and Verification by Load Testing, J. Bridge Eng., 16, pp.854-862. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000172