DOI QR코드

DOI QR Code

Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method

이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조

  • Kim, Dong-Hyeon (Department of Green Energy Engineering, Uiduk University) ;
  • Lee, Dong-Hoon (Department of Green Energy Engineering, Uiduk University)
  • 김동현 (위덕대학교 그린에너지 공학부) ;
  • 이동훈 (위덕대학교 그린에너지 공학부)
  • Received : 2018.05.23
  • Accepted : 2018.06.19
  • Published : 2018.06.29

Abstract

The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.

Keywords

References

  1. M. J. Suriani and W. B. Wan Nik, Corros. Sci. Tech., 16, 85 (2017).
  2. M. Y. shon, Corros. Sci. Tech., 8, 103 (2009).
  3. M. Y. shon and H. S. Kwon, Corros. Sci. Tech., 7, 344 (2008).
  4. M. Zhang, S. Feng, L. Wang, and Y. Zheng, Biotribology, 5, 31 (2016). https://doi.org/10.1016/j.biotri.2015.08.002
  5. H. J. Ensikat, P. D. Kuru, C. Neinhuis, and W. Barthlott, Beilstein J. Nanotech., 2, 152 (2011). https://doi.org/10.3762/bjnano.2.19
  6. S. S. Latthe, C. Terashima, K. Nakata, and A. Fujishima, Molecules, 19, 4256 (2014). https://doi.org/10.3390/molecules19044256
  7. W. Ma, Q. Zhang, D. Hua, R. Xiong, and J. Zhao, RSC Adv., 6, 12868 (2016). https://doi.org/10.1039/C5RA27309A
  8. S. A. Mahadik, P. D. Fernando, N. D. Hegade, P. B. Wagh, and S. C. Gupta, J. Colloid Interf. Sci., 405, 262 (2013). https://doi.org/10.1016/j.jcis.2013.04.042
  9. L. Wang, M. Wen, M. Zhang, L. Jiang, and Y. Zheng, J. Mater. Chem. A, 2, 3312 (2014). https://doi.org/10.1039/c3ta14779g
  10. X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, and X. Li, J. Am. Chem. Soc., 126, 3064 (2004). https://doi.org/10.1021/ja0398722
  11. B. Balu, V. Breedveld, and D. W. Hess, Langmuir, 24, 4785 (2008). https://doi.org/10.1021/la703766c
  12. H. C. Barshilia and N. Gupta, Vacuum, 99, 42 (2014). https://doi.org/10.1016/j.vacuum.2013.04.020
  13. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, and A. Takano, Appl. Surf. Sci., 244, 619 (2005). https://doi.org/10.1016/j.apsusc.2004.10.143
  14. S. A. Mahadik, M. S. Kavale, S. K. Mukherjee, and A. V. Rao, Appl. Surf. Sci., 257, 333 (2010). https://doi.org/10.1016/j.apsusc.2010.06.062
  15. A. caldarelli, M. Raimondo, F. Veronesi, G. Boveri, and G. Guarini, Surf. Coat. Technol., 276, 408 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.037
  16. P. Peng, Q. Ke, G. Zhou, and T. Tang, J. Colloid Interf. Sci., 395, 326 (2013). https://doi.org/10.1016/j.jcis.2012.12.036
  17. L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, and D. Zhu, Angew. Chem. Int. Ed., 42, 800 (2003). https://doi.org/10.1002/anie.200390212
  18. T. Ogawa, B. Ding, Y. Sone, and S. Shiratori, Nanotechnology, 18, 165607 (2007). https://doi.org/10.1088/0957-4484/18/16/165607
  19. S. Amigoni, E. T. de Givenchy, M. Dufay, and F. Guittard, Langmuir, 25, 11073 (2009). https://doi.org/10.1021/la901369f
  20. S. H. Lee, E. Y. Byun, J. K. Kim, and D. G. Kim, Curr. Appl. Phys., 14, S180 (2014). https://doi.org/10.1016/j.cap.2013.12.031
  21. G. M. Shanthini, C. A. Martin, N. Sakthivel, S. C. Veerla, K. Elayaraja, B. S. Lakshmi, K. Asokan, D. Kanjilal, and S. N. Kalkura, Appl. Surf. Sci., 329, 116 (2015). https://doi.org/10.1016/j.apsusc.2014.12.129
  22. W. Y. Ding, D. Y. Ju, and W. P. Chai, Appl. Surf. Sci., 256, 6876 (2010). https://doi.org/10.1016/j.apsusc.2010.04.104
  23. J. H. Lee, S. H. Lee, D. Y. Kim, and Y. S. Park, Thin Solid Films, 546, 94 (2013). https://doi.org/10.1016/j.tsf.2013.05.018
  24. E. Francisco, I. C. Sanchez, B. L. Espana-Sanchez, M. Josue D, C. Salvador, P. Fabienne, and L. Gabriel, Nucl. Instrum. Meth. B, 362, 49 (2015). https://doi.org/10.1016/j.nimb.2015.09.027