DOI QR코드

DOI QR Code

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L. (Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences) ;
  • Gnedenkov, S.V. (Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences) ;
  • Khrisanfova, O.A. (Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences) ;
  • Puz', A.V. (Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences) ;
  • Egorkin, V.S. (Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences) ;
  • Zavidnaya, A.G. (Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences)
  • Received : 2018.02.19
  • Accepted : 2018.04.30
  • Published : 2018.06.29

Abstract

Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.

Keywords

References

  1. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Biomaterals, 27, 1728 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.003
  2. F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kaine, R. Willumeit, and F. Feyerabend, Curr. Opin. Solid St. M., 12, 63 (2008). https://doi.org/10.1016/j.cossms.2009.04.001
  3. F. Witte, Acta Biomater., 6, 1680 (2010). https://doi.org/10.1016/j.actbio.2010.02.028
  4. R. C. Zeng, W. Dietzel, F. Witte, N. Hort, and C. Blawert, Adv. Eng. Mater., 10, B3 (2008). https://doi.org/10.1002/adem.200800035
  5. M. Carboneras, M. C. Garcia-Alonso, and M. L. Escudero, Corros. Sci., 53, 1433 (2011). https://doi.org/10.1016/j.corsci.2011.01.014
  6. A. Purnama, H. Hermawan, J. Couet, and D. Mantovani, Acta Biomater., 6, 1800 (2010). https://doi.org/10.1016/j.actbio.2010.02.027
  7. X. N. Gu and Y. F. Zheng, Front. Mater. Sci. China, 4, 111 (2010). https://doi.org/10.1007/s11706-010-0024-1
  8. S. Hiromoto, T. Shishido, A. Yamamoto, N. Maruyama, H. Somekawa, and T. Mukai, Corros. Sci., 50, 2906 (2008). https://doi.org/10.1016/j.corsci.2008.08.013
  9. K. C. W. Wu, Y. H. Yang, Y. H Liang, H. Y. Chen, E. Sung, Y. Yamauchi, and H. L. Feng, Curr. Nanosci., 7, 926 (2011). https://doi.org/10.2174/157341311798220763
  10. B. P. Bastakoti, M. Inuoe, S. Yusa, S. H. Liao, K. C. Wu, K. Nakashima, and Y. Yamauchi, Chem. Commun., 48, 6532 (2012). https://doi.org/10.1039/c2cc32279j
  11. Y. T. Huang, M. Imura, Y. Nemoto, C. H. Cheng, and Y. Yamauchi, Sci. Technol. Adv. Mat., 12, 045005 (2011). https://doi.org/10.1088/1468-6996/12/4/045005
  12. L. Tan, Q. Wang, F. Geng, X. Xi, J. Qiu, and K. Yang, Trans. Nonferrous Met. Soc. China, 20, 648 (2010). https://doi.org/10.1016/S1003-6326(10)60555-9
  13. D. Lee, Ch. Sfeir, and P. Kuneta, Mater. Sci. Eng. C., 29, 69 (2009). https://doi.org/10.1016/j.msec.2008.05.017
  14. M. Tomozawa, S. Hiromoto, and H. Yoshimoto, Surf. Coat. Technol., 204, 3243 (2010). https://doi.org/10.1016/j.surfcoat.2010.03.023
  15. Kusukawa Kazuhiro, Biological material and method of manufacturing the same, 2007-202782. (2007.08.16).
  16. S. V. Gnedenkov, O. A. Khrisanfova, S. L. Sinebryukhov, A. V. Puz, and M. V. Sidorova, Method of the calcium-phosphate coating of titanium and titanium alloys implants, 2348744 (2009.03.10).
  17. S. V. Gnedenkov, Yu. P. Scharkeev, S. L. Sinebryukhov, O. A. Khrisanfova, E. V. Legostaeva, A. G. Zavidnaya, A. V. Puz, and I. A. Khlusov, Inorg. Mater. Appl. Res., 2, 474 (2011). https://doi.org/10.1134/S2075113311050133
  18. Zh. Yao, L. Li, and Zh. Jiang, Appl. Surf. Sci., 255, 6724 (2009). https://doi.org/10.1016/j.apsusc.2009.02.082
  19. P. B. Shrinivasan, J. Liang, C. Blawert, M. Stormer, and W. Dietzel, Appl. Surf. Sci., 256 4017-4022 (2010). https://doi.org/10.1016/j.apsusc.2010.01.069
  20. S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebryukhov, V. S. Egorkin, M. V. Nistratova, A. Yerokhin, and A. Matthews, Surf. Coat. Technol., 204, 2316 (2010). https://doi.org/10.1016/j.surfcoat.2009.12.024
  21. S. V. Gnedenkov and S. L Sinebryukhov, Compos. Interface., 16, 387 (2009). https://doi.org/10.1163/156855409X447165
  22. S. V. Gnedenkov, O. A. Khrisanfova, and A. G Zavidnaya, Plasma electrolytic oxidation of metals and alloys in tar-trate-containing solutions. Dal'nauka, Vladivostok, Russian (2008).
  23. S. V. Gnedenkov, S. L. Sinebryukhov, and V. I. Sergienko, Composite multifunctional coatings formed on the metals and alloys by plasma electrolytic oxidation, p. 460, Dal'nauka, Vladivostok, Russian (2013).
  24. P. Sun, Y. Lu, Y. Yuan, X. Jing, and M. Zhang, Surf. Coat. Technol., 205, 4500 (2011). https://doi.org/10.1016/j.surfcoat.2011.03.065
  25. A. N. Minaev, S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, M. V. Sidorova, Yu. V. Tsvetkov, and A. V. Samokhin, Protect. Met., 47, 840 (2011).
  26. H. T. Siu and H. C. Man, Appl. Surf. Sci., 274, 181 (2013). https://doi.org/10.1016/j.apsusc.2013.03.008
  27. J. L. Xu, F. Liu, D. Z. Yu, and L. C. Zhao, Curr. Appl. Phys., 9, 663 (2009). https://doi.org/10.1016/j.cap.2008.06.003
  28. J. L. Xu, F. Liu, F. P. Wang, and L. C. Zhao, Mater. Lett., 62, 4112 (2008). https://doi.org/10.1016/j.matlet.2008.06.009
  29. J. L. Xu, F. Liu, F. P. Wang, D. Z. Yu, and L. C. Zhao, Appl. Surf. Sci., 254, 6642 (2008). https://doi.org/10.1016/j.apsusc.2008.04.068
  30. F. Liu, J. Xu, F. Wang, L. Zhao, and T. Shimizu, Surf. Coat. Technol., 204, 3294 (2010). https://doi.org/10.1016/j.surfcoat.2010.03.044
  31. H. Wang, F. Liu, Y. Zhang, and F. Wang, Surf. Coat. Technol., 206, 4054 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.088
  32. O. A. Khrisanphova, L. M. Volkova, S. V. Gnedenkov, T. A. Kaydalova, and P. S. Gordienko, Zh. Neorg. Khim., 40, 558 (1995).
  33. G. Rondelli, Biomaterials, 17, 2003 (1996). https://doi.org/10.1016/0142-9612(95)00352-5
  34. S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, A. K. Tsvetnikov, and A. N. Minaev, Protect. Met., 44, 704 (2008). https://doi.org/10.1134/S0033173208070102
  35. X. Li, X. Zhang, Z. Li, and Y. Qian, Solid State Commun., 137, 581 (2006). https://doi.org/10.1016/j.ssc.2006.01.031
  36. S. L. Sinebryukhov, A. S. Gnedenkov, O. A. Khrisanphova, and S. V. Gnedenkov, Surf. Eng., 25, 565 (2009). https://doi.org/10.1179/026708409X363237