DOI QR코드

DOI QR Code

A Computationally Efficient Retina Detection and Enhancement Image Processing Pipeline for Smartphone-Captured Fundus Images

  • Elloumi, Yaroub (Gaspard Monge Computer Science Laboratory, ESIEE-Paris, University Paris-Est Marne-la-Vallee) ;
  • Akil, Mohamed (Gaspard Monge Computer Science Laboratory, ESIEE-Paris, University Paris-Est Marne-la-Vallee) ;
  • Kehtarnavaz, Nasser (Department of Electrical and Computer Engineering, University of Texas at Dallas)
  • 투고 : 2018.04.28
  • 심사 : 2018.05.10
  • 발행 : 2018.06.30

초록

Due to the handheld holding of smartphones and the presence of light leakage and non-balanced contrast, the detection of the retina area in smartphone-captured fundus images is more challenging than retinography-captured fundus images. This paper presents a computationally efficient image processing pipeline in order to detect and enhance the retina area in smartphone-captured fundus images. The developed pipeline consists of five image processing components, namely point spread function parameter estimation, deconvolution, contrast balancing, circular Hough transform, and retina area extraction. The results obtained indicate a typical fundus image captured by a smartphone through a D-EYE lens is processed in 1 second.

키워드

참고문헌

  1. S. Kar, and S. Maity. Detection of neovascularization in retinal images using mutual information maximization. Computers and Electrical Engineering, 62:1-15, August 2017. https://doi.org/10.1016/j.compeleceng.2017.07.014
  2. J. Tan, H. Fujita, S. Sivaprasad, S. Bhandary, A. Rao, K. Chua, and U. Acharya. Automated Segmentation of Exudates, Haemorrhages, Microaneurysm susing Single Convolutional Neural Network. Information Sciences, 420 :66-76, December 2017. https://doi.org/10.1016/j.ins.2017.08.050
  3. A. Floriano, A. Santiago, O. Nieto, and C. Marquez. A machine learning approach to medical image classification: Detecting age-related macular degeneration in fundus images. Computers & Electrical Engineering, available online, November 2017.
  4. J. Medhi and S. Dandapat. An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images. Computers in Biology and Medicine, 74:30-44, July 2016. https://doi.org/10.1016/j.compbiomed.2016.04.007
  5. J. Cheng, J. Liu, Y. Xu, F. Yin, D. Wong, N. Tan, D. Tao, C. Cheng, T. Aung, and T. Wong. Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening. IEEE Trans. on Medical Imaging, 32:1019-1032, June 2013. https://doi.org/10.1109/TMI.2013.2247770
  6. S. Devi, K. Ramachandran, and A. Sharma. Retinal Vasculature Segmentation in Smartphone Ophthalmoscope Images. Proceedings of 7th WACBE World Congress on Bioengineering, 52:64-67, 2015.
  7. M. Blanckenberg, C. Worst and C. Scheffer. Development of a Mobile Phone Based Ophthalmoscope for Telemedicine. Proceedings of the IEEE Engineering in Medicine and Biology Conference, Massachusetts, 5236-5239, 2011.
  8. S. Wang, K. Jin, H. Lu, C. Cheng, J. Ye, and D. Qian. Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE Trans. on Medical Imaging, 35:1046 - 1055, April 2016. https://doi.org/10.1109/TMI.2015.2506902
  9. A. Russo, F. Morescalchi, C. Costagliola, L. Delcassi, and F. Semeraro. A Novel Device to Exploit the Smartphone Camera for Fundus Photography. Journal of Ophthalmology, Article ID 823139, 2015.
  10. A. Russo, F. Morescalchi, C. Costagliola, L. Delcassi, and F. Semeraro. Comparison of Smartphone Ophthalmoscopy With Slit-Lamp Biomicroscopy for Grading Diabetic Retinopathy. American Journal of Ophthalmology, 159:360-364, February 2015. https://doi.org/10.1016/j.ajo.2014.11.008
  11. M. Dobes, L. Machala, and T. Furst. Blurred image restoration: A fast method of finding the motion length and angle. Digital Signal Processing, 20:1677-1686, December 2010. https://doi.org/10.1016/j.dsp.2010.03.012
  12. J. Cai, H. Ji, C. Liu, and Z. Shen. Blind motion deblurring using multiple images. Journal of Computational Physics, 228:5057-5071, August 2009. https://doi.org/10.1016/j.jcp.2009.04.022
  13. A. Deshpande, and S. Patnaik. Single image motion deblurring: An accurate PSF estimation and ringing reduction. Optik, 125:3612-3618, July 2014. https://doi.org/10.1016/j.ijleo.2014.01.126
  14. H. Lidong, Z. Wei, W. Jun, and S. Zebin. Combination of contrast limited adaptive histogram equalization and discrete wavelet transform for image enhancement. IET Image Processing, 9:908 - 915, October 2015. https://doi.org/10.1049/iet-ipr.2015.0150
  15. Smartphone-Captured Retinal Image Database, https://sites.google.com/site/yaroubelloumi/retinal-images, 2017.
  16. Gegundez-Arias, M. E., Marin, D., Bravo, J. M., and Suero, A. Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Computerized Medical Imaging and Graphics, 37:386-393, September 2013. https://doi.org/10.1016/j.compmedimag.2013.06.002