DOI QR코드

DOI QR Code

Immunoreactivity of PCNA in the Cerebellum of Developing Guinea Pig

  • Kim, Dong-joon (Department of anesthesiology and pain medicine, Chosun University Hospital) ;
  • Jun, Yonghyun (Department of Anatomy, School of Medicine, Chosun University)
  • Received : 2018.05.29
  • Accepted : 2018.05.31
  • Published : 2018.06.30

Abstract

The investigation of the embryonic development of the cerebellum has a long history. The postnatal normal development of the cerebellum in rodents and other animals became a popular topic for morphological investigations nearly a century ago. However, surprisingly, only a few studies are available regarding the prenatal normal development of the rodent cerebellum, especially in guinea pigs. Cell proliferation is essential for the development of the nervous system. The assessment of cell proliferation can be achieved by using various methods. In this study, we investigated the cell proliferation of the cerebellar cortex in guinea pigs at different stages of pregnancy and in postnatal life. Fetuses were obtained by cesarean section at 50 or 60 days of gestation (dg). Immunohistochemistry was performed with proliferating cell nuclear antigen (PCNA) antibody in the cerebellum. Strong PCNA immunoreactivity was observed in the external granular layer (EGL), which is a neurogenic zone in the cerebellum. The proportion of PCNA-IR cells was greater at 1 week than at 60 dg in lobule I, but not lobule VIII. After 50 dg, the width of the EGL continued to decline until 1 week, due to the maturation of the EGL cells. These results demonstrate the pattern of PCNA immunoreactivity in the developing cerebellum of guinea pigs. This serves as a guideline to study abnormal cerebellum development.

Keywords

References

  1. Caviness VS, Takahashi T, Nowakowski RS: Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends in Neuroscience 18(9):379-383, 1995 https://doi.org/10.1016/0166-2236(95)93933-O
  2. Lichtenwalner RJ, Parent JM: Adult neurogenesis and ischemic forebrain. J Cereb Blood Flow Metab 26: 1-20, 2006 https://doi.org/10.1038/sj.jcbfm.9600170
  3. Curtis MA, Low VF, Faull RL. Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 72: 990-1005, 2012 https://doi.org/10.1002/dneu.22028
  4. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E: Hippocampal neurogenesis in adult old world primates. Proc Natl Acad Sci USA 96:5263-5267, 1999 https://doi.org/10.1073/pnas.96.9.5263
  5. Guidi S, Ciani E, Severi S, Contestabile A, Bartesaghi R: Postnatal neurogenesis in the dentate gyrus of the guinea pig. Hippocampus 15:285-301, 2005 https://doi.org/10.1002/hipo.20050
  6. Altman J, Bayer SA: Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 79(1):23-48, 1978
  7. Fujita S, Shimada M, Nakamura T: H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J Comp Neurol 128(2):191-208, 1966 https://doi.org/10.1002/cne.901280206
  8. Altman J: Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269-293, 1969 https://doi.org/10.1002/cne.901360303
  9. Rakic P: Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141(3):283-312, 1971 https://doi.org/10.1002/cne.901410303
  10. Abraham H, Tornoczky T, Kosztolanyi G, Seress L: Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci 19(1):53-62, 2001 https://doi.org/10.1016/S0736-5748(00)00065-4
  11. Ponti G, Peretto P, Bonfanti L: Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLoS One 3:e2366, 2008 https://doi.org/10.1371/journal.pone.0002366
  12. Ponti G, Peretto P, Bonfanti L: A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Dev Biol. 294:168-180, 2006 https://doi.org/10.1016/j.ydbio.2006.02.037
  13. Mallard C, Loeliger M, Copolov D, Rees S: Reduced numbers of neurons in the hippocamus and cerebellum in the postnatal guinea pig following intrauterine growth restriction. Neuroscience 100:327-333, 2000 https://doi.org/10.1016/S0306-4522(00)00271-2
  14. Dieni S, Rees S: BDNF and TrkB protein expression is altered in the fetal hipocampus but not cerebellum after chronic prenatal compromise. Exp Neurol 192:265-273, 2005 https://doi.org/10.1016/j.expneurol.2004.06.003
  15. Munro K, Rees S, O'Dowd R, Tolcos M: Developmental profile of erythropoietin and its receptor in guinea-pig retina. Cell Tissue Res 336:21-29. 2009 https://doi.org/10.1007/s00441-009-0754-5
  16. Tolcos M, Bateman E, O'Dowd R, Markwick R, Vrijsen K, Rehn A, Rees S: Intrauterine growth restriction affects the maturation of myelin. Exp Neurol 232:53-65, 2011 https://doi.org/10.1016/j.expneurol.2011.08.002
  17. Nitsos I, Rees S: The effects of intrauterine growth retardation on the development of neuroglia in the fetal guinea pigs. An immunohistochemical and ultrastructural study. Int J Dev Neurosci 8:233-244, 1990 https://doi.org/10.1016/0736-5748(90)90029-2
  18. Dieni S, Rees S: Distribution of brain-derived neurotrophic factor and TrkB receptor proteins in the fetal and postnatal hippocampus and cerebellum of the guinea pig. J Comp Neurol 454:229-240, 2002 https://doi.org/10.1002/cne.10422
  19. De Haan HH, Gunn AJ, Williams CE, Gluckmann PD: Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr Res 41:96-104, 1997
  20. Keunen H, Deutz NE, Van Reempts JL, Hasaart TH: Transient umbilical cord occlusion in late-gestation fetal sheep results in hippocampal damage but not in cerebral arteriovenous difference for nitrite, a stabe end product of nitric oxide. J Soc Gynecol Investig 6:120-126, 1999 https://doi.org/10.1177/107155769900600302
  21. Mallard C. Rees S, Stringer M, Cock ML, Harding R: Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res 43:262-270, 1998
  22. Lossi L, Coli A, Giannessi E, Stornelli MR, Marroni P: Cell proliferation and apoptosis during histogenesis of the guinea pig and rabbit cerebellar cortex. Ital J Anat Embryol 107(2):117-125, 2002
  23. Hall PA, Coates PJ: Assessment of cell proliferation in pathology-what next?. Histopathology 26(2):105-112, 1995 https://doi.org/10.1111/j.1365-2559.1995.tb00639.x
  24. Wullimann MF, Knipp S: Proliferation pattern changes in the zebrafish brain from embryonic through early postembryonic stages. Anatomy and embryology. 202(5):385-400, 2000 https://doi.org/10.1007/s004290000115
  25. Ekstrom P, Johnsson CM, Ohlin LM: Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436(1):92-110, 2001 https://doi.org/10.1002/cne.1056
  26. Gil JM, Mohapel P, Araujo IM, Popovic N, Li JY, Brundin P, Petersen A: Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiol Dis 20:744-751, 2005 https://doi.org/10.1016/j.nbd.2005.05.006
  27. He J, Nixon K, Shetty AK, Crews FT: Chronic alcohol exposure reduces hippocampal neurogenesis and dendritic growth of newborn neurons. Eur J Neurosci 21:2711-2720, 2005 https://doi.org/10.1111/j.1460-9568.2005.04120.x
  28. Dobbing, J and Sands J: Growth and development of the brain and spinal cord of the guinea pig. Brain Res 17(1):115-123, 1970 https://doi.org/10.1016/0006-8993(70)90311-2
  29. Raucci F, Raucci F1, Di Fiore MM, Pinelli C, D'Aniello B, Luongo L, Polese G, Rastogi RK; Proliferative activity in the frog brain: a PCNA-immunohistochemistry analysis. J Chem Neuroanat 32(4):127-142, 2006 https://doi.org/10.1016/j.jchemneu.2006.08.001
  30. Ogata K, Ogata Y, Nakamura RM, Tan EM: Purification and N-terminal amino acid sequence of proliferating cell nuclear antigen (PCNA)/cyclin and development of ELISA for anti-PCNA antibodies. J Immunol 135(4):2623-2627, 1985
  31. Bravo R, Celis JE: A search for differential polypeptide synthesis throughout the cell cycle of HeLa cells. J Cell Biol 84(3):795-802, 1980 https://doi.org/10.1083/jcb.84.3.795
  32. Prelich GCK, Tan M, Kostura MB, Mathews A, So G, Downey KM, Stillman B: Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326(6112):517-520, 1987 https://doi.org/10.1038/326517a0
  33. Fairman MP: DNA polymerase delta/PCNA: actions and interactions. J Cell Sci 95(Pt1):1-4, 1990
  34. Candal ER, Anadon WJ, DeGrip, Rodriguez-Moldes I: Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Brain Res 154(1):101-119, 2005 https://doi.org/10.1016/j.devbrainres.2004.10.008
  35. Morris GF, Mathews MB: Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264(23):13856-13864, 1989
  36. Kee NJ, Preston E, Wojtowicz JM: Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 136(3):313-320, 2001 https://doi.org/10.1007/s002210000591
  37. Ryder EF, Cepko CL : Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12(5):1011-1028, 1994 https://doi.org/10.1016/0896-6273(94)90310-7
  38. Seress L: Divergent responses to thyroid hormone treatment of the different secondary germinal layers in the postnatal rat brain. J Hirnforsch1 9(5):395-403, 1978
  39. Gao WQ, Hatten ME: Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120(5):1059-1070, 1994