References
- Caviness VS, Takahashi T, Nowakowski RS: Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends in Neuroscience 18(9):379-383, 1995 https://doi.org/10.1016/0166-2236(95)93933-O
- Lichtenwalner RJ, Parent JM: Adult neurogenesis and ischemic forebrain. J Cereb Blood Flow Metab 26: 1-20, 2006 https://doi.org/10.1038/sj.jcbfm.9600170
- Curtis MA, Low VF, Faull RL. Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 72: 990-1005, 2012 https://doi.org/10.1002/dneu.22028
- Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E: Hippocampal neurogenesis in adult old world primates. Proc Natl Acad Sci USA 96:5263-5267, 1999 https://doi.org/10.1073/pnas.96.9.5263
- Guidi S, Ciani E, Severi S, Contestabile A, Bartesaghi R: Postnatal neurogenesis in the dentate gyrus of the guinea pig. Hippocampus 15:285-301, 2005 https://doi.org/10.1002/hipo.20050
- Altman J, Bayer SA: Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 79(1):23-48, 1978
- Fujita S, Shimada M, Nakamura T: H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J Comp Neurol 128(2):191-208, 1966 https://doi.org/10.1002/cne.901280206
- Altman J: Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269-293, 1969 https://doi.org/10.1002/cne.901360303
- Rakic P: Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol 141(3):283-312, 1971 https://doi.org/10.1002/cne.901410303
- Abraham H, Tornoczky T, Kosztolanyi G, Seress L: Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci 19(1):53-62, 2001 https://doi.org/10.1016/S0736-5748(00)00065-4
- Ponti G, Peretto P, Bonfanti L: Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLoS One 3:e2366, 2008 https://doi.org/10.1371/journal.pone.0002366
- Ponti G, Peretto P, Bonfanti L: A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Dev Biol. 294:168-180, 2006 https://doi.org/10.1016/j.ydbio.2006.02.037
- Mallard C, Loeliger M, Copolov D, Rees S: Reduced numbers of neurons in the hippocamus and cerebellum in the postnatal guinea pig following intrauterine growth restriction. Neuroscience 100:327-333, 2000 https://doi.org/10.1016/S0306-4522(00)00271-2
- Dieni S, Rees S: BDNF and TrkB protein expression is altered in the fetal hipocampus but not cerebellum after chronic prenatal compromise. Exp Neurol 192:265-273, 2005 https://doi.org/10.1016/j.expneurol.2004.06.003
- Munro K, Rees S, O'Dowd R, Tolcos M: Developmental profile of erythropoietin and its receptor in guinea-pig retina. Cell Tissue Res 336:21-29. 2009 https://doi.org/10.1007/s00441-009-0754-5
- Tolcos M, Bateman E, O'Dowd R, Markwick R, Vrijsen K, Rehn A, Rees S: Intrauterine growth restriction affects the maturation of myelin. Exp Neurol 232:53-65, 2011 https://doi.org/10.1016/j.expneurol.2011.08.002
- Nitsos I, Rees S: The effects of intrauterine growth retardation on the development of neuroglia in the fetal guinea pigs. An immunohistochemical and ultrastructural study. Int J Dev Neurosci 8:233-244, 1990 https://doi.org/10.1016/0736-5748(90)90029-2
- Dieni S, Rees S: Distribution of brain-derived neurotrophic factor and TrkB receptor proteins in the fetal and postnatal hippocampus and cerebellum of the guinea pig. J Comp Neurol 454:229-240, 2002 https://doi.org/10.1002/cne.10422
- De Haan HH, Gunn AJ, Williams CE, Gluckmann PD: Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr Res 41:96-104, 1997
- Keunen H, Deutz NE, Van Reempts JL, Hasaart TH: Transient umbilical cord occlusion in late-gestation fetal sheep results in hippocampal damage but not in cerebral arteriovenous difference for nitrite, a stabe end product of nitric oxide. J Soc Gynecol Investig 6:120-126, 1999 https://doi.org/10.1177/107155769900600302
- Mallard C. Rees S, Stringer M, Cock ML, Harding R: Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res 43:262-270, 1998
- Lossi L, Coli A, Giannessi E, Stornelli MR, Marroni P: Cell proliferation and apoptosis during histogenesis of the guinea pig and rabbit cerebellar cortex. Ital J Anat Embryol 107(2):117-125, 2002
- Hall PA, Coates PJ: Assessment of cell proliferation in pathology-what next?. Histopathology 26(2):105-112, 1995 https://doi.org/10.1111/j.1365-2559.1995.tb00639.x
- Wullimann MF, Knipp S: Proliferation pattern changes in the zebrafish brain from embryonic through early postembryonic stages. Anatomy and embryology. 202(5):385-400, 2000 https://doi.org/10.1007/s004290000115
- Ekstrom P, Johnsson CM, Ohlin LM: Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436(1):92-110, 2001 https://doi.org/10.1002/cne.1056
- Gil JM, Mohapel P, Araujo IM, Popovic N, Li JY, Brundin P, Petersen A: Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice. Neurobiol Dis 20:744-751, 2005 https://doi.org/10.1016/j.nbd.2005.05.006
- He J, Nixon K, Shetty AK, Crews FT: Chronic alcohol exposure reduces hippocampal neurogenesis and dendritic growth of newborn neurons. Eur J Neurosci 21:2711-2720, 2005 https://doi.org/10.1111/j.1460-9568.2005.04120.x
- Dobbing, J and Sands J: Growth and development of the brain and spinal cord of the guinea pig. Brain Res 17(1):115-123, 1970 https://doi.org/10.1016/0006-8993(70)90311-2
- Raucci F, Raucci F1, Di Fiore MM, Pinelli C, D'Aniello B, Luongo L, Polese G, Rastogi RK; Proliferative activity in the frog brain: a PCNA-immunohistochemistry analysis. J Chem Neuroanat 32(4):127-142, 2006 https://doi.org/10.1016/j.jchemneu.2006.08.001
- Ogata K, Ogata Y, Nakamura RM, Tan EM: Purification and N-terminal amino acid sequence of proliferating cell nuclear antigen (PCNA)/cyclin and development of ELISA for anti-PCNA antibodies. J Immunol 135(4):2623-2627, 1985
- Bravo R, Celis JE: A search for differential polypeptide synthesis throughout the cell cycle of HeLa cells. J Cell Biol 84(3):795-802, 1980 https://doi.org/10.1083/jcb.84.3.795
- Prelich GCK, Tan M, Kostura MB, Mathews A, So G, Downey KM, Stillman B: Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326(6112):517-520, 1987 https://doi.org/10.1038/326517a0
- Fairman MP: DNA polymerase delta/PCNA: actions and interactions. J Cell Sci 95(Pt1):1-4, 1990
- Candal ER, Anadon WJ, DeGrip, Rodriguez-Moldes I: Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Brain Res 154(1):101-119, 2005 https://doi.org/10.1016/j.devbrainres.2004.10.008
- Morris GF, Mathews MB: Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264(23):13856-13864, 1989
- Kee NJ, Preston E, Wojtowicz JM: Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 136(3):313-320, 2001 https://doi.org/10.1007/s002210000591
- Ryder EF, Cepko CL : Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12(5):1011-1028, 1994 https://doi.org/10.1016/0896-6273(94)90310-7
- Seress L: Divergent responses to thyroid hormone treatment of the different secondary germinal layers in the postnatal rat brain. J Hirnforsch1 9(5):395-403, 1978
- Gao WQ, Hatten ME: Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120(5):1059-1070, 1994