DOI QR코드

DOI QR Code

A Study on Multiband FTN Method for Improving Throughput Efficiency

전송 효율 향상을 위한 다중 밴드 FTN 기법 연구

  • Received : 2018.04.16
  • Accepted : 2018.05.07
  • Published : 2018.06.30

Abstract

FTN method which transmits signals faster the Nyquist rate is representative method for improving throughput efficiency sacrificed performance due to inter-symbol interference. To compensate performance loss, in this paper, we propose a multiband FTN method which split the coded bits into several bands and transmits signals applying FTN method. As coded bits are being assigned different bands, number of samples per bit of each band is increased, it induced performance improvement by noise averaging effect. In the simulations, compared the performance of single band FTN method and multiband FTN method when the interference rate is 25%. The results of simulation show the performance of proposed method is better than that of single band FTN one by 0.3dB~0.5dB.

전송 효율 향상을 위한 방안들 중 Nyquist 전송 속도보다 더 빠르게 신호를 전송하는 FTN(Faster Than Nyquist) 기법이 있다. FTN 기법을 적용함으로써 필연적으로 생기는 인접 심볼에 대한 간섭으로 인해 전송률은 향상되나 성능이 열화된다. 따라서 본 논문에서는 부호화된 비트를 여러개의 밴드로 나뉘어 각 밴드에서 FTN 방식을 적용하는 다중 밴드 FTN 전송 기법을 제안한다. 제안한 다중 밴드 FTN 전송 기법은 단일 밴드 FTN 전송 기법에 비해 각 밴드에서 각각의 데이터에 할당하는 샘플 수를 증가함으로써 성능을 향상시킬 수 있다. 시뮬레이션 결과 간섭 비율 25%일 때 최적의 밴드 수를 확인하였으며, 단일 밴드 FTN 전송 기법과 성능을 비교하여 0.3dB ~ 0.5dB 성능 향상을 확인하였다.

Keywords

References

  1. L. M. Hwang, B. J. Lee, B. G. Yeo, J. P. Cho, and K. S. Kim, "Link Relay H-ARQ mode for Throughput improvement in a Satellite Communication network." The Journal of The Institute of Internet, Broadcasting and Communication, vol. 16, no. 1, pp. 121-127, 2016. DOI:https://doi.org/10.7236/JIIBC.2016.16.1.121
  2. R. G. Gallager, "Low-density parity - check codes," IRE Transactions on information theory, vol. 8, no. 1, pp. 21-28, Jan. 1962. https://doi.org/10.1109/TIT.1962.1057683
  3. J. E. Mazo, "Faster-than-Nyquist signaling," The Bell System Technical Journal, vol. 54, no. 8, pp. 1451-1462, Oct. 1975. https://doi.org/10.1002/j.1538-7305.1975.tb02043.x
  4. M. El Hefnawy, and H. Taoka, "Overview of Faster-Than-Nyquist for Future Mobile Communication Systems," In Proceeding 77th IEEE Vehicular Technology Conference, pp. 1-5, Dresden, Germany, Jun. 2013.
  5. M. Yuhas, Y. Feng, and J. Bajcsy, "On the Capacity of Faster-than-Nyquist MIMO Transmission with CSI at the Receiver," IEEE Globecom Workshops, pp. 1-6, Dec. 2015.
  6. C. U. Baek, G. W. Park and J. W. Jung, " An Efficient Receiver Structure for Faster-than-Nyquist Signal in MIMO System ," Journal of Communications, vol. 12, no. 5, pp. 285-290, May. 2017.
  7. Y. M. Kim, P. P. Shang, and S. Y. Kim, "Estimation of soft decision channel gain for coded MIMO system," The Journal of the Korean Institute of Communication Sciences, vol. 36, no. 6, pp. 577-586, Jun. 2011. https://doi.org/10.7840/KICS.2011.36A.6.577
  8. J. B. Anderson, A. Prlja and F. Rusek, "New reduced state space BCJR algorithms for the ISI channel," in Proceeding 2009 IEEE International Symposium on Information Theory, Seoul, Korea, pp. 889-893, 2009.
  9. H. Esmaiel and D. Jiang, "Review article: Multicarrier communication for underwater acoustic channel," International Journal of Communications, Network and System Sciences, vol.6, pp.361-376, Aug. 2013. https://doi.org/10.4236/ijcns.2013.68039
  10. P. A. van Walree, E. Sangfelt, and G. Leus, "Multicarrier spread spectrum for Covert Acoustic Communications," In Proceeding of MTS/IEEE OCEANS, Quebec City, QC, Canada, pp. 1-8, Sep. 2008.