DOI QR코드

DOI QR Code

Uncertainty assessment of ensemble streamflow prediction method

앙상블 유량예측기법의 불확실성 평가

  • Kim, Seon-Ho (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kang, Shin-Uk (National Drought Information Analysis Center, Korea Water Resources Cooperation) ;
  • Bae, Deg-Hyo (Department of Civil and Environmental Engineering, Sejong University)
  • 김선호 (세종대학교 공과대학 건설환경공학과) ;
  • 강신욱 (한국수자원공사 국가가뭄정보분석센터) ;
  • 배덕효 (세종대학교 공과대학 건설환경공학과)
  • Received : 2018.02.10
  • Accepted : 2018.03.21
  • Published : 2018.06.30

Abstract

The objective of this study is to analyze uncertainties of ensemble-based streamflow prediction method for model parameters and input data. ESP (Ensemble Streamflow Prediction) and BAYES-ESP (Bayesian-ESP) based on ABCD rainfall-runoff model were selected as streamflow prediction method. GLUE (Generalized Likelihood Uncertainty Estimation) was applied for the analysis of parameter uncertainty. The analysis of input uncertainty was performed according to the duration of meteorological scenarios for ESP. The result showed that parameter uncertainty was much more significant than input uncertainty for the ensemble-based streamflow prediction. It also indicated that the duration of observed meteorological data was appropriate to using more than 20 years. And the BAYES-ESP was effective to reduce uncertainty of ESP method. It is concluded that this analysis is meaningful for elaborating characteristics of ESP method and error factors of ensemble-based streamflow prediction method.

본 연구에서는 충주댐 유역에 대해 앙상블 유량예측기법의 강우-유출 모델 매개변수, 입력자료에 따른 불확실성 분석을 수행하였다. 앙상블 유량예측기법으로는 ESP (Ensemble Streamflow Prediction) 기법과 BAYES-ESP (Bayesian-ESP) 기법을 활용하였으며, 강우-유출 모델로는 ABCD를 활용하였다. 모델 매개변수에 따른 불확실성 분석은 GLUE (Generalized Likelihood Uncertainty Estimation) 기법을 적용하였으며, 입력자료에 따른 불확실성 분석은 유량예측 앙상블에 활용되는 기상시나리오의 기간에 따라 수행하였다. 연구결과 앙상블 유량예측 기법은 입력자료 보다 모델 매개변수의 영향을 크게 받았으며, 20년 이상의 관측 기상자료가 확보되었을 때 활용하는 것이 적절하였다. 또한 BAYES-ESP는 ESP에 비해 불확실성을 감소시킬 수 있는 것으로 나타났다. 본 연구는 불확실성 분석을 통해 앙상블 유량예측기법의 특징을 규명하고 오차의 원인을 분석하였다는 점에서 가치가 있다고 판단된다.

Keywords

References

  1. Beven, K., and Binley, A. (1992). "The future of distributed models: model calibration and uncertainty prediction." Hydrological Process, Vol. 6, No. 3, pp. 279-298. https://doi.org/10.1002/hyp.3360060305
  2. DeChant, C. M., and Moradkhani, H. (2011). "Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation." Hydrology and Earth System Science, Vol. 15, pp. 3399-3410. https://doi.org/10.5194/hess-15-3399-2011
  3. Duan, Q., Sorooshian, S., and Gupta, V. K. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff models." Water Resources Research, Vol. 28, No. 4, pp. 1015-1031. https://doi.org/10.1029/91WR02985
  4. Eum, H. I., Kim, Y. O., and Ko, I. H. (2006). "Value of ensemble streamflow forecasts for reservoir operation during the draw-down period." Journal of Korea Water Resources, Vol. 39, No. 3, pp. 187-198. https://doi.org/10.3741/JKWRA.2006.39.3.187
  5. Hay, L. E., McCabe, G. J., Clark, M. P., and Risley, J. C. (2009). "Reducing streamflow forecast uncertainty: application and qualitative assessment of the upper Klamath river basin, Oregon." Journal of the American Water Resources Association, Vol. 45, No. 3, pp. 580-596. https://doi.org/10.1111/j.1752-1688.2009.00307.x
  6. Kang, M. S., Yu, M. S., and Yi, J. E. (2014). "Prediction of Andong reservoir inflow using ensemble technique." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 3, pp. 795-804. https://doi.org/10.12652/Ksce.2014.34.3.0795
  7. Kim, H. S., Kim, H. S., Jeon, G. I., and Kang, S.W (2016). "Assessment of 2014-2015 Drought Events." Journal of Korea Water Resources, Vol. 49, No. 7, pp. 61-75. https://doi.org/10.3741/JKWRA.2016.49.1.61
  8. Kim, J. C., Kim, J. K., and Lee, S. J. (2011). "Improvement of mid/ long-term ESP scheme using probabilistic weather forecasting." Journal of Korea Water Resources, Vol. 44, No. 10, pp. 843-851. https://doi.org/10.3741/JKWRA.2011.44.10.843
  9. Kim, J. H., and Bae, D. H. (2006). "Probabilistic medium- and long- term reservoir inflow forecasts (II) use of GDAPS for ensemble reservoir inflow forecasts." Journal of Korea Water Resources, Vol. 39, No. 3, pp. 275-288. https://doi.org/10.3741/JKWRA.2006.39.3.275
  10. Kim, S. H., So, J. M., Kang, S. U., and Bae, D. H. (2017). "Development and evaluation of dam inflow prediction method based on Bayesian method." Journal of Korea water Resources, Vol. 50, No. 7, pp. 489-502.
  11. Kim, T. M. (2011). Accuracy and uncertainty assessment of real-time system for dam inflow forecasting, Master dissertation, Sejong University, Seoul, Korea, pp. 44-46.
  12. Kim, Y. O., Jeong, D. I., and Kim, H. S. (2001). "Improving water supply outlook in Korea with ensemble streamflow prediction." Water International, Vol. 26, No. 4, pp. 563-568. https://doi.org/10.1080/02508060108686957
  13. K-water (2017). Drought information analysis improvement and development direction. Report, K-water, Daejeon, Korea, pp. 163-166.
  14. Lee, S. J., Jeong, C. S., Kim, J. C., and Hwang, M. H. (2011). "Long-term streamflow prediction using ESP and RDAPS model." Journal of Korea Water Resources, Vol. 44, No. 12, pp. 967-974. https://doi.org/10.3741/JKWRA.2011.44.12.967
  15. Najafi, M. R., Moradkhani, H., and Piechota, Y. C. (2012). "Ensemble streamflow prediction: climate signal weighting methods vs. climate forecast system reanalysis." Journal of Hydrology, Vol. 442-443, No. 6, pp.105-116. https://doi.org/10.1016/j.jhydrol.2012.04.003
  16. Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  17. Pavia, R. C. D., Collischonn, W., Bonnet, M. P., and de Goncalves, L. G. G. (2012). "On the sources of hydrological prediction uncertainty in the Amazon." Hydrology and Earth System Science, Vol. 16, pp. 3127-3137. https://doi.org/10.5194/hess-16-3127-2012
  18. Son, K. H., and Bae, D. H. (2015). "Applicability assessment of hydrological drought outlook using ESP method." Journal of Korea Water Resources, Vol. 48, No. 7, pp. 581-593. https://doi.org/10.3741/JKWRA.2015.48.7.581
  19. Thomas, H. A. (1981). Improved methods for national water assessment. Report, United States Water Resources Council, Washington, D.C.
  20. Wood, A. W., and Lettenmaier, D. P. (2008). "An ensemble approach for attribution of hydrologic prediction uncertainty." Geophysical Research Letters, Vol. 35, L14401. https://doi.org/10.1029/2008GL034648
  21. Yang J., Reichert, P., Abbaspour, K. C., Xia, J., and Yang, H. (2008). "Comparing uncertainty analysis technique for a SWAT application to the Chaohe basin in China." Journal of Hydrology, Vol. 358, No. 1-2, pp. 1-23. https://doi.org/10.1016/j.jhydrol.2008.05.012