DOI QR코드

DOI QR Code

SOME RESULTS ABOUT THE REGULARITIES OF MULTIFRACTAL MEASURES

  • Selmi, Bilel (Department of Mathematics Faculty of Sciences of Monastir University of Monastir)
  • Received : 2018.03.06
  • Accepted : 2018.04.09
  • Published : 2018.06.30

Abstract

In this paper, we generelize the Olsen's density theorem to any measurable set, allowing us to extend the main results of H.K. Baek in (Proc. Indian Acad. Sci. (Math. Sci.) Vol. 118, (2008), pp. 273-279.). In particular, we tried through these results to improve the decomposition theorem of Besicovitch's type for the regularities of multifractal Hausdorff measure and packing measure.

Keywords

References

  1. N. Attia, B. Selmi and Ch. Souissi. Some density results of relative multifractal analysis. Chaos, Solitons and Fractals. 103 (2017), 1-11. https://doi.org/10.1016/j.chaos.2017.05.029
  2. H.K. Baek and H.H. Lee. Regularity of d-measure. Acta Math. Hungarica. 99 (2003), 25-32. https://doi.org/10.1023/A:1024597010100
  3. H.K. Baek. Regularities of multifractal measures. Proc. Indian Acad. Sci. 118 (2008), 273-279.
  4. A. S. Besicovitch. On the fundamental geometrical properties of linearly measur-able plane sets of points II. Math. Ann. 155 (1938), 296-329.
  5. J. Cole and L. Olsen. Multifractal Variation Measures and Multifractal Density Theorems. Real Analysis Exchange. 28 (2003), 501-514. https://doi.org/10.14321/realanalexch.28.2.0501
  6. C. Cutler. The density theorem and Hausdorff inequality for packing measure in general metric spaces. Illinois J. Math. 39 (1995), 676-694.
  7. Z. Douzi and B. Selmi. Multifractal variation for projections of measures. Chaos, Solitons & Fractals. 91 (2016), 414-420. https://doi.org/10.1016/j.chaos.2016.06.026
  8. G.A. Edgar. Packing measures a gauge variation. Proceedings of the american mathematical society. 122 (1994), 167-174.
  9. G. A. Edgar. Centered densities and fractal measures. New York J. Math. 13 (2007), 33-87.
  10. K. J. Falconer. The Geometry of Fractal sets: Mathematical Foundations and Applications. John Wiley & Sons Ltd., (1990).
  11. H.H. Lee and I.S. Baek. On d-measure and d-dimension. Real Analysis Exchange 17 (1992), 590-596.
  12. H.H. Lee and I.S. Baek. The comparison of d-meuasure with packing and Haus-dorff measures. Kyungpook Mathematical Journal 32 (1992), 523-531.
  13. H.H. Lee and I.S. Baek. The relations of Hausdorff, *-Hausdorff, and packing measures. Real Analysis Exchange 16 (1991), 497-507.
  14. P. Mattila.The Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambrdige. (1995).
  15. P. Mattila and R.D. Mauldin. Measure and dimension functions: measurablility and densities. Math. Proc. Camb. Phil. Soc. 121 (1997), 81-100. https://doi.org/10.1017/S0305004196001089
  16. A.P. Morse and J.F. Randolph. The $\phi$-rectifiable subsets of the plane. Am. Math. Soc. Trans. 55 (1944), 236-305.
  17. L. Olsen. A multifractal formalism. Advances in Mathematics. 116 (1995), 82-196. https://doi.org/10.1006/aima.1995.1066
  18. L. Olsen. Dimension Inequalities of Multifractal Hausdorff Measures and Multi-fractal Packing Measures. Math. Scand. 86 (2000), 109-129. https://doi.org/10.7146/math.scand.a-14284
  19. D. Preiss. Geometry of measures in Rn: distribution, rectifiablity and densities. Ann. Math. 125 (1987), 537-643. https://doi.org/10.2307/1971410
  20. T. Rajala. Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces. Monatsh. Math. 164 (2011), 313-323. https://doi.org/10.1007/s00605-010-0271-3
  21. X.S. Raymond and C. Tricot. Packing regularity of sets in n-space, Math. Proc. Camb. Philos. Soc. 103 (1988), 133-145. https://doi.org/10.1017/S0305004100064690
  22. B. Selmi. On the strong regularity with the multifractal measures in a probability space. Preprint, (2017).
  23. V. Suomala. On the conical density properties of measures on $\mathbb{R}^n$. Math. Proc. Cambridge Philos. Soc, 138 (2005), 493-512. https://doi.org/10.1017/S0305004105008376
  24. V. Suomala. One-sided density theorems for measures on the real line. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 409-416.
  25. S.J. Taylor and C. Tricot. The packing measure of rectifiable subsets of the plane. Math. Proc. Camb. Philos. Soc. 99 (1986), 285-296. https://doi.org/10.1017/S0305004100064203
  26. S.J. Taylor and C. Tricot. Packing measure and its evaluation for a brownian path. Trans. Am. Math. Soc. 288 (1985), 679-699. https://doi.org/10.1090/S0002-9947-1985-0776398-8

Cited by

  1. Regularities of general Hausdorff and packing functions vol.123, pp.None, 2018, https://doi.org/10.1016/j.chaos.2019.04.001
  2. The relative multifractal densities: A review and application vol.24, pp.6, 2018, https://doi.org/10.1080/09720502.2020.1860286