References
- N. Attia, B. Selmi and Ch. Souissi. Some density results of relative multifractal analysis. Chaos, Solitons and Fractals. 103 (2017), 1-11. https://doi.org/10.1016/j.chaos.2017.05.029
- H.K. Baek and H.H. Lee. Regularity of d-measure. Acta Math. Hungarica. 99 (2003), 25-32. https://doi.org/10.1023/A:1024597010100
- H.K. Baek. Regularities of multifractal measures. Proc. Indian Acad. Sci. 118 (2008), 273-279.
- A. S. Besicovitch. On the fundamental geometrical properties of linearly measur-able plane sets of points II. Math. Ann. 155 (1938), 296-329.
- J. Cole and L. Olsen. Multifractal Variation Measures and Multifractal Density Theorems. Real Analysis Exchange. 28 (2003), 501-514. https://doi.org/10.14321/realanalexch.28.2.0501
- C. Cutler. The density theorem and Hausdorff inequality for packing measure in general metric spaces. Illinois J. Math. 39 (1995), 676-694.
- Z. Douzi and B. Selmi. Multifractal variation for projections of measures. Chaos, Solitons & Fractals. 91 (2016), 414-420. https://doi.org/10.1016/j.chaos.2016.06.026
- G.A. Edgar. Packing measures a gauge variation. Proceedings of the american mathematical society. 122 (1994), 167-174.
- G. A. Edgar. Centered densities and fractal measures. New York J. Math. 13 (2007), 33-87.
- K. J. Falconer. The Geometry of Fractal sets: Mathematical Foundations and Applications. John Wiley & Sons Ltd., (1990).
- H.H. Lee and I.S. Baek. On d-measure and d-dimension. Real Analysis Exchange 17 (1992), 590-596.
- H.H. Lee and I.S. Baek. The comparison of d-meuasure with packing and Haus-dorff measures. Kyungpook Mathematical Journal 32 (1992), 523-531.
- H.H. Lee and I.S. Baek. The relations of Hausdorff, *-Hausdorff, and packing measures. Real Analysis Exchange 16 (1991), 497-507.
- P. Mattila.The Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambrdige. (1995).
- P. Mattila and R.D. Mauldin. Measure and dimension functions: measurablility and densities. Math. Proc. Camb. Phil. Soc. 121 (1997), 81-100. https://doi.org/10.1017/S0305004196001089
-
A.P. Morse and J.F. Randolph. The
$\phi$ -rectifiable subsets of the plane. Am. Math. Soc. Trans. 55 (1944), 236-305. - L. Olsen. A multifractal formalism. Advances in Mathematics. 116 (1995), 82-196. https://doi.org/10.1006/aima.1995.1066
- L. Olsen. Dimension Inequalities of Multifractal Hausdorff Measures and Multi-fractal Packing Measures. Math. Scand. 86 (2000), 109-129. https://doi.org/10.7146/math.scand.a-14284
- D. Preiss. Geometry of measures in Rn: distribution, rectifiablity and densities. Ann. Math. 125 (1987), 537-643. https://doi.org/10.2307/1971410
- T. Rajala. Comparing the Hausdorff and packing measures of sets of small dimension in metric spaces. Monatsh. Math. 164 (2011), 313-323. https://doi.org/10.1007/s00605-010-0271-3
- X.S. Raymond and C. Tricot. Packing regularity of sets in n-space, Math. Proc. Camb. Philos. Soc. 103 (1988), 133-145. https://doi.org/10.1017/S0305004100064690
- B. Selmi. On the strong regularity with the multifractal measures in a probability space. Preprint, (2017).
-
V. Suomala. On the conical density properties of measures on
$\mathbb{R}^n$ . Math. Proc. Cambridge Philos. Soc, 138 (2005), 493-512. https://doi.org/10.1017/S0305004105008376 - V. Suomala. One-sided density theorems for measures on the real line. Atti Sem. Mat. Fis. Univ. Modena e Reggio Emilia 53 (2005), 409-416.
- S.J. Taylor and C. Tricot. The packing measure of rectifiable subsets of the plane. Math. Proc. Camb. Philos. Soc. 99 (1986), 285-296. https://doi.org/10.1017/S0305004100064203
- S.J. Taylor and C. Tricot. Packing measure and its evaluation for a brownian path. Trans. Am. Math. Soc. 288 (1985), 679-699. https://doi.org/10.1090/S0002-9947-1985-0776398-8
Cited by
- Regularities of general Hausdorff and packing functions vol.123, pp.None, 2018, https://doi.org/10.1016/j.chaos.2019.04.001
- The relative multifractal densities: A review and application vol.24, pp.6, 2018, https://doi.org/10.1080/09720502.2020.1860286