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POLYGONAL PARTITIONS

ByunGgcHAN KiMm

ABSTRACT. By acting the dihedral group Dy on the set of k-tuple
multi-partitions, we introduce k-gonal partitions for all positive in-
tegers k. We give generating functions for these new partition func-
tions and investigate their arithmetic properties.

1. Introduction

Let P, be the set of k-tuple multi-partitions
Pr:={(A1, A2, ..., Ag) + Ai’s are ordinary partitions}.

In a recent paper [1], the author introduced a new way to obtain new
partition classes by applying group actions on Py for £ = 2 or 3. For
example, when k = 3, the author defined a group action on P5 by

U()\17 )\27 )\3> = ()\0(1)7 )\0(2)7 )\0(3))

for o € S3, where S5 is the symmetric group. Then, it is natural to define
the number of orbits of weight n, where the weight of multi-partitions
is defined by the sum of the parts appeared in the partitions. Recall
that if o(A) = m, then A and 7 are in the same orbit. For a given
tri-partition A = (A1, A2, A3), suppose that each partition ); is on the
i-th vertex of a regular triangle. Two tri-partitions A = (A1, A2, A3) and
7 = (my, g, m3) are in the same orbits if A can be obtained by rotating or
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reflecting 7 on the regular triangle. Thus, we can understand |Ps/Ss|(n),
the number of orbits of weight n, counts the number of tri-partitions of
n, where we regard two partitions are the same if we can obtain one tri-
partition by rotating or reflecting the other tri-partition. In this light,
we say |P3/Ss|(n) is the number of triangular partitions. In the previous
paper [1], the author proved that

o0 11 3 2
(1.1) nz:; |P3/S5](n)q" = 6 ((q>3 + (@)oo (0% ) oo + (qg;q?))oo) .

o0

Here and throughout the paper, we use a standard g-series notation:
(@)oo = (a;Q)oc == [ J(1 — ag"™").
n=1

In the geometric sense, it is natural to examine |Py/Dg|(n), where D,
is the dihedral group of order 2k. To this end, we define a group action
on Py by

O'()\l, /\2, coey )\k> = ()\0(1), )\0(2), ey )\O'(k‘)>

for o € Dy. Then, |Py/Dg|(n) is the number of orbits with weight n, i.e.
the number of k-tuple multi-partitions of n, where k-tuple partitions in
the same orbit define the same partition. We may think the partitions
A1, ..., Mg in a k-tuple multi-partition are on the vertices of k-gon.
Therefore, |Py/Dg|(n) is the number of k-tuple partitions of n, where
we regard two k-tuple multi-partitions are the same if one multi-partition
can be obtained by reflecting or rotating the other multi-partition. In
this light, we say Py(n) := |Px/Dx|(n) is the number of k-gonal partitions
of n.

The first task to examine the arithmetic properties of k-gonal parti-
tions is finding a generating function.

THEOREM 1.1. For a positive integer k,

2k Z Py(n)q"
n=0

k k 1
B (q)w(qz;q2)g’;*1>/2 + Zj:l (qk/<k,j>;qk/<k,j>)g’;’ﬂ’

, If k is odd,

k k 1
2L A AT = G &

, if k is even.

For example, when & = 1, P;(n) is an ordinary partition function
p(n). For k = 3, we recover the generating function (1.1). For k = 4, we
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find a square-partition generating function

. W11 3 2 2
2 Pl = ¢ (@ @ e )

Our next goal is to investigate arithmetic properties of k-gonal parti-
tions. The author [1] proved that

P3(3n+2)=0 (mod 3)

for all non-negative integers n. In this article, we examine the k-gonal
partitions modulo 3, 5, and 7. For example, for modulo 5, we prove the
following congruences.

THEOREM 1.2. For all non-negative integers n,
P3(25m +22) =0 (mod 5),
Py(25n +21) =0 (mod 5),
Ps(25n +19) =0 (mod 5),
P;(25n+18) =0 (mod 5).
(

One might conjecture that Ps(25n + 17) = 0 (mod 5), but Ps(17) =
7805082.

The rest of the paper is organized as follows. In the next section,
we give basic facts on the theory of modular forms and introduce /-
regular partitions, which we use to prove the congruences for polygonal
partitions. In the following section, we give proofs for the generating
function for k-gonal partitions and their arithmetic properties.

Acknowledgement. The author thanks organizers and participants of
the meeting, 2017 Trends in Number Theory at Ganghwa-do, where this
project was initiated. The author is also grateful to the referee for his
or her valuable comments on an earlier version of this paper.

2. Preliminaries
We first introduce basic properties of modular forms. For more de-
tails, consult [4] for example. Define I' := SLy(Z) and I'o(N) :=

{ (Z 3) €l':c=0 (mod N)} For a meromorphic function f on the
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complex upper half plane H and an integer k, we define the weight k
slash operator by

az+0b

(2 0) =t aytr (210)).
We say a holomorphic function f is a modular form of weight & on T'g(V)
if f is invariant under the weight k slash operator. Let M (To(N))
(resp. M (To(N))) denote the vector space of holomorphic modular
forms (resp. weakly holomorphic forms) on I'y(/V), where by weakly
holomorphic, we mean that f might have poles at the cusps. For a
positive integer m, we define the U,,-operator: if f(¢q) has a Fourier
expansion f(q) = >_ a(n)q™ with ¢ = exp(27miz), then

Unf(z) := Z a(mn)q"”.

For a prime p, it is well known that if f(z) € Myg(To(Np?)), then
Uyf(z) € My(To(Np)). The Dedekind eta function 7n(z) is defined by
n(z) == ¢"/*(¢;¢)oo, where ¢ = exp(27iz) and z € H. For a fixed
positive integer N and integers r;’s, a function of the form

(21) 7(z) = [ ey
n|N

is called an n-quotient. By the famous results of Newman [3] and
Ligozat [2], we can determine when an n-quotient becomes a (weakly)
holomorphic form of level N and the order of the n-quotient at the cusps
of Fo(N)

For a given positive integer ¢, we say a partition A is f-regular if there
is no part divisible by £. It is not hard to see that

f: aé(n)qn—i-(f—l)/%l _ n(lz)
o n(z)

where a,(n) is the number of (-regular partitions of n. We will use the
fact that

n*(9z)
n3(z)

1(49z)
n(z)

€ Mg(To(9)), € My(Io(25)), € My(To(49)).
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3. Proofs

We start with a proof for the generating function. In the later sub-
sections, we consider Py(n) modulo 5, 7, and 3.

3.1. Proof of Theorem 1.1. We first recall the Burnside’s lemma,
which says that the number of orbits | X /G| is given by

1
[ X/G| = @Z!XQL

geG

where X is a set and G is a group acting on X, and X is the invariant
subset of X under the action of g. Thus, we need to find the invariant
subset of each element in D;. Now we assume that k is odd. Then there
are k reflections and k rotations in Dy. For the reflections, all of them are
the reflections along the axis connecting one vertex of k-gon and the mid
of opposite edge. Thus, two partitions in the vertices in the reflection
should be the same and the partition on the vertex in the reflection axis
has no regulation. Thus, for a reflection g € Dy, the number of k-tuple
multi-partitions of weight n in the invariant subset Py is generated by

1
(@)oo (g% ¢2) &1

On the other hand, for a rotation g € Dy, we can think it rotate clockwise
by 27j/k. To be invariant under this rotation, the partitions on k/(k, j)
vertices should be the same, and thus such k-tuple multi-partitions of n
is generated by

1
(qk/(k,j); qk/(k,j)>g’277) ’

which conclude the first part of Theorem 1.1.

Now we consider the even k cases. For rotations, invariant subgroups
are the same as odd k cases. For the reflections, there are two kinds of
reflections for even k. There are k/2 reflections along the axis connecting
mid points of opposite edges and there are k/2 reflections along the axis
connecting two opposite vertices. The first type reflections correspond

to
1

(q% )5
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and the second type reflections correspond to
1

k_ )
(@)% (g% ) &2/

which conclude the second part of Theorem 1.1.

3.2. Modulo 5. We only prove the first congruence of Theorem 1.2 in
detail as the other congruences follow in a similar manner.

Proof of Theorem 1.2. Let F5(q) be defined by

3(2 2
i) = (77 g 5z) | ,n(252)n(502) 77(752)) A% (252),

7*(2) n(z)n(2z) 1(32)
where A(z) is the unique cusp form of weight 12 and of level 1.Then,
F5(q) € M36(T'9(150)). Since U, F(nz) = F(z), it suffices to prove that

U25F5 =0 (mod 5)

Since Uss Fs € M3g(I'9(30)) and its dimension is 214, we can prove the

congruence by checking the first 215 coefficients due to Strum’s theorem.
]

3.3. Modulo 7. For modulo 7, we obtain the following congruences.

THEOREM 3.1. For all non-negative integers n,

P3(49n +43) =0 (mod 7),
Py(49n +41) =0 (mod 7),
P5(49n +39) =0 (mod 7),
Ps(49n+37) =0 (mod 7),
Ps(49n +33) =0 (mod 7).

Since Py(31) = 25775333497 = 6 (mod 7), it is not true that Py(49n+
31) =0 (mod 7) for all non-negative integers.

Here we give a proof for the second congruence in detail and omit the
other cases.

Proof. Recall that

S W11 3 2 2
2 Pilma” = § (<q>go T T on@eo. <q4;q4>oo> |
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Define F7(q) by

4 2 2
n'(49z) . n*(98z) n°(492)n(98z) 77(1962)) 8

Fr(q) = ( +3 +2 +2 A®(49z).

@W=00 e P et s )5
We can check that F; € Mgs(I'9(196). Thus, to prove UsF;

=0
(mod 7), one need to check the first 384 coefficients as Uy 7 € Mgg(28)
of which dimension is 383. [

3.4. Modulo 3. In this subsection, we prove a mod 3 congruence.
THEOREM 3.2. For all non-negative integers n,
Ps(n+7)=0 (mod 3)
Proof. From Theorem 1.1, we find that

i Ps(n)q" = i ( L + 1 + 5 + 2 + 2 )
=" 2\@% @@k @R (@GP ()
Now we define

6 3 2 2 2

n°(92) | n’(18z) n*(92)n°(18z) ~ n*(272) 77(54Z)> 5
F3(q) := ( +4 +2 +2 A%(92).

=) TR T e T Res TP )& )

Then, F3(q) € Mas(I9(162)). The desirable congruence follows from

UgF3(q) = 0 (mod 9), which can be proved by checking the first 74
coefficients as the dimension of May(I'y(18)) is 73. O

4. Concluding Remarks

Numerics suggest that

P;(3n+2)=0 (mod 3),
Ps(On+7)=0 (mod 3),
Py(9n +6) =0 (mod 3),
P13(9n+5) =0 (mod 3),
Pi5(9n+4)=0 (mod 3),
Pg(9n+3)=0 (mod 3),
Py1(3n+2)=0 (mod 3),
Py(9n+7)=0 (mod 3),
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Py;(3n+2)=0 (mod 3),

P3y(9n+8) =0 (mod 3),

P3y3(9n+7)=0 (mod 3).
where the first two congruences have been proven. Most of the above
congruences are Uy congruences as in the proof of Theorem 3.2. It would
be very interesting if there is a systemic way to explain all of the above
congruences. In other words, is there a criterion on k when Psy,(9n+9 —

((k)) =0 (mod 3) holds, where ¢(k) = k (mod 9)?
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