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ESTIMATION OF HURST PARAMETER AND

MINIMUM VARIANCE SPECTRUM

Joo-Mok Kim

Abstract. Consider FARIMA time series with innovations that
have infinite variances. We are interested in the estimation of self-
similarities Hn of FARIMA(0, d, 0) by using modified R/S statistic.
We can confirm that the Hn converges to Hurst parameter H = d+ 1

2 .
Finally, we figure out ARMA and minimum variance power spectrum
density of FARIMA processes.

1. Introduction

Self-similar processes have been studied in the analysis of traffic load
in high speed networks and financial mathematics( [3], [9], [10]). On
the other hand, Self-similarity, long range dependence and heavy tailed
process have been observed in many time series, i.e. signal processing
and finance( [7], [11]). In particular, Fractional autoregressive integrated
moving average (FARIMA) processes in packet network traffic has been
the focus of much attention( [8], [12]). And, there has been a recent flood
of literature and discussion on the tail behavior of queue-length distri-
bution, motivated by potential applications to the design and control by
high-speed telecommunication networks( [1], [2], [5], [6]).

In this paper we consider self-similar process and FARIMA processes
with Gaussian innovations and study convergence of Hurst parameter
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Hn by using modified R/S statistic. On the other hand, we estimate au-
toregressive moving average (ARMA) spectrum and minimum variance
power spectrum of FARIMA processes.

In section 2, we define self-similar process, Hurst parameter, long
range dependence and FARIMA process.

The following R/S method which was used by Taqqu( [11]) is one of
the better known method. For a time series X = {Xi : i ≤ 1}, with par-
tial sum Y (n) =

∑n
i=1Xi, and sample variance S2(n) = (1/n)

∑n
i=1X

2
i −

(1/n)2Y (n)2, the R/S statistic, or the rescaled adjusted range, is given
by

R

S
(n) =

1

S(n)

[
max0≤t≤n(Y (t)− t

n
Y (n))−min0≤t≤n(Y (t)− t

n
Y (n))

]
.

For fractional Gaussian noise

E[R/S(n)] ∼ CHn
H , as n→∞,

where CH is positive, finite constant not depend on n.
B. Sikdar and K.S. Vastola( [7]) estimated self-similar parameter by

above R/S method and its computer simulation. H. Stark and J.W.
Woods( [10]) figured out power spectrum density of signal process and
J.M. Kim and Y.K. Kim( [4]) figured out power spectrum density of
FARIMA processes.

In section 3, by using modified R/S statistic which is normalized by a
standard deviation which takes into account the covariances of the first q
lags , we estimate self-similarities Hn of FARIMA(0, d, 0) and show that
self-similarity Hn converges to Hurst parameter H = d + 1

2
. In section

4, we figure out ARMA and minimum variance power spectrum density
of FARIMA(0, d, 0) processes.

2. Definition and Preliminary

In this section we first define self-similar processes and FARIMA pro-
cesses.

Definition 2.1. A continuous process X(t) is self-similar with self-
similarity parameter H ≥ 0 if it satisfies the condition:

X(t)
d
= c−HX(ct), ∀ t ≥ 0,∀c > 0,
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where the equality
d
= is in the sense of finite-dimensional distributions.

Self-similar processes are invariant in distribution under scaling of
time and space. Brownian motion is a Gaussian process with mean zero
and autocovariance function

E[X(t1)X(t2)] = min(t1, t2).

It is H self-similar with H = 1/2. And, Fractional Brownian motion is
important example of self-similar process.

Let X = {X(i), i ≥ 1} be a stationary sequence and

X(m)(k) =
1

m

km∑
i=(k−1)m+1

X(i), k = 1, 2, 3, ·

be corresponding aggregated sequence with the level of aggregation m
and averaging over each block. The index, k, labels the block. Now we
define exact self-similar which is appropriate in the context of time series
theory.

Definition 2.2. A stationary sequence X = {X(i), i ≥ 1} is exactly
self-similar if it satisfies

X
d
= m1−HX(m)

for all aggregation levels m.

Let τX(k) be a covariance of stationary sequence, i.e.

τX(k) = Cov(X(i), X(i+ k))

Definition 2.3. A stationary sequence X(i) exhibits long range de-
pendence if

∞∑
k=−∞

|τX(k)| =∞.

A standard example of a long range dependent process is fractional
Brownian motion, with Hurst parameter H > 1

2
.

Since fractional Brownian motion {BH(t) : t ∈ R} has stationary
increments, its increments Gj form a stationary sequence. Fractional



158 J.M.Kim

Gaussian noise is a mean zero and stationary Gaussian time series whose
autocovariance function τ(h) = EGiGi+h is given by

τ(h) = 2−1{(h+ 1)2H − 2h2H + |h− 1|2H},
h ≥ 0. As h→∞,

τ(h) ∼ H(2H − 1)h2H−2.

Since τ(h) = 0 for h ≥ 1 when H = 1/2. the Gi are white noise. When
1/2 < H < 1, they display long-range dependence.

We introduce a FARIMA(p, d, q) which is both long range dependent
and has heavy tails. FARIMA(p, d, q) processes are capable of modeling
both short and long range dependence in traffic models since the effect
of d on distant samples decays hyperbolically while the effects of p and
q decay exponentially.

Definition 2.4. A series Xi is called a FARIMA(p, d, q) if

Φ(B)∇dXi = Θ(B)εi

where the εi are independent, identically distributed normal random
variables with mean 0 and variance 1, Φ(B) = 1 − Φ1B − · · · − ΦpB

p,
Θ(B) = 1 − Θ1B − · · · − ΘqB

q and the coefficients Φ1, · · · ,Φp and
Θ1, · · · ,Θq are constants,

∇d = (1−B)d =
∞∑
i=0

bi(−d)Bi

and B is the backward shift operator defined as BiXt = Xt−i and

bi(−d) =
i∏

k=1

k + d− 1

k
=

Γ(i+ d)

Γ(d)Γ(i+ 1)
.

For large lags d, the autocovariance function satisfies for 0 < d < 1/2,

τ(h) ∼ σ2Ch2d−1 as h→∞
where σ2=Var Xi and C depend on d,Φ and Θ . Thus, for large lags
d, the autocovariance function has the same power decay as the autoco-
variance of fractional Gaussian noise. Relating the exponents gives

d = H − 1

2
.
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3. Estimation of Hurst parameter H

First, we estimate Hurst parameter through the behavior of the ab-
solute moments. Consider qth moment

µ(m)(q) = E|X(m)|q = E

∣∣∣∣∣ 1

m

m∑
i=1

X(i)

∣∣∣∣∣
q

.

Definition 3.1. A stationary sequence X = {X(i), i ≥ 1} is called
multi-fractal if the logarithms of the absolute moments scale linearly
with the logarithms of the aggregation level m, that is,

log µ(m)(q) = β(q) logm+ c(q).

Definition 3.2. A multi-fractal sequence X = {X(i), i ≥ 1} is called
self-similar if the exponent β(q) is linear with respect to q.

Theorem 3.1. Let {X(t), t ≥ 0} be a self-similar. Then {X(i), i ≥ 1}
is multi-fractal self-similar sequence with β(q) = q(H − 1) and c(q) =
logE|X(1)|q. Therefore, we can estimate Hurst parameter H as

Ĥ = 1 +
β̂(q)

q
.

Proof. By the self-similarity of X, we know

X(1)
d
= m1−HX(m)(1).

Therefore, we get

µ(m)(q) = E|X(m)|q = E|X(m)(1)|q

= E|mH−1X(1)|q

= mq(H−1)E|X(1)|q.

Thus,

log µ(m)(q) = q(H − 1) logm+ logE|X(1)|q.
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To estimate the qth moment of X, µ(m)(q), we can use the qth sample
absolute moment µ̂(m)(q) of the aggregated series X(m), that is,

µ̂(m)(q) =
1

N/m

N/m∑
k=1

∣∣X(m)(k)
∣∣q .

If µ̂(m)(q) scales linearly with logm, then a multi-fractal model can
be applied. If, in addition, β(q) is linear in q, then a self-similar model is
adequate and we can estimate Hurst parameter H for fractional ARIMA
sequences.

Now, we consider FARIMA time series with d = 0.35. d can be
0 < d < 0.5 because FARIMA displays long range dependence. For each
q = 1, 2, 3, 4, we calculate the qth sample absolute moments of aggregated
series X(m). And, we can know that µ̂(m)(q) scales linearly with logm.
Therefore, a multi-fractal model can be applied.

To know a self-similar model is adequate, we need figure out whether
the slope β̂(q) is linear in q or not. The following two tables show that

the correlation of β̂(q) and q is −0.9982 and the slope β̂(q) is linear in
q.

q slope

q 1.00/0.0 −0.9982/0.0018
slope −0.9982/0.0018 1.00/0.0

Table 1. Correlation Coefficients and Prob > |R| under H0 : ρ = 0

q = 1 q = 2 q = 3 q = 4

slope −0.1557 −0.3745 −0.5537 −0.7941
intercept −0.0161 0.2167 0.5866 1.0533

Table 2. Slope and intercept of µ̂(m)(q) for each q

Therefore, we can conclude that FARIMA time series with d = 0.35
is self-similar process with Hurst parameter Ĥ, where,

Ĥ = 1 + β̂(q) = 0.8434± 0.036.

Now, let us estimate Hurst parameter by another method.
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Figure 1. Sample traces of FARIMA(0, 0.35, 0), n = 1, 000

Figure 2. Graphical R/S output and Hurst parameter H

To define modified R/S statistic Vq(N)( [13]), instead of using the
sample standard deviation, S, we use a weight sum of autocovariances,
namely, Sq(N) as

(
1

N

N∑
i=1

(Xi − X̄N)2 +
2

N

q∑
i=1

ωi(q)

[
N∑

j=i+1

(Xj − X̄N)(Xj−iX̄N)

])1/2

,
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where X̄N denotes the sample mean of the times series, and the weights
ωi(q) are given by

ωi(q) = 1− i

q + 1
, q < N.

We calculate Lo’s modified R/S statistic, Vq(N), defined by

Vq(N) = N−1/2R(N)/Sq(N).

Hence, we consider sample traces, graphical R/S output and Hurst
parameter H of FARIMA(0, d, 0) in terms of d = 0.35.

The following Figure 1 and Figure 3 illustrate FARIMA processes in
the case n = 1, 000 and n = 10, 000.

Figure 3. Sample traces of FARIMA(0, 0.35, 0), n = 10, 000

Figure 4. Graphical R/S output and Hurst parameter H



Hurst parameter and minimum variance spectrum 163

We consider FARIMA(0, d, 0) in terms of d = 0.35 and estimate the
self-similarity Hn and figure out convergence of Hn into H = d+ 1

2
.

We can estimate H1,000 = 0.883 as shown in Figure 2 and H10,000 =
0.857 in Figure 4. Therefore, we can figure out convergence of Hn into
H = d+ 1

2
.

4. ARMA and Minimum Variance Power Spectrum Density

Let XT (t) be a sample function X(t) in −T < t < T . If T is finite,
then we assume XT (t) is satisfied the followimg∫ T

T

|XT (t)|dt <∞.

Then we obtain the Fourier Transform

XT (ω) =

∫ T

T

X(t)e−iωtdt.

Power spectrum density is

PXX(ω) = lim
T→∞

E[|XT (ω)|2]
2T

and the following is satisfied

PXX
(
eiω
)

=
∞∑

k=−∞

RXX(k)e−iωk

where, RXX is approximated with estimated correlation sequence R̂XX .
Recall biased correlation estimate of X(n), n = 0, 1, 2, · · · , N − 1,

defined as

R̂XX(k) =
1

N

N−1−k∑
k=0

X(l + k)X(l), 0 ≤ k < N − 1.

The power spectrum estimate is

P̂XX
(
eiω
)

=
L∑

k=−L

R̂XX(k)e−iωk, L ≤ N
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Let us estimate ARMA power spectrum and minimum variance power
spectrum. First, ARMA spectrum density of a FARIMA process is equal
to

P (ω) =
σ2|Θ(exp(−iω))|2

2π|Φ(exp(−iω))|2
|1− (exp(−iω))|−2d.

In Figure 5, we display ARMA spectrum of FARIMA process.

Figure 5. Autoregressive Moving Average Spectrum

Now, we consider minimum variance spectrum estimation. We take
overlapping segments of the data, each of length L(total will be K =
N − L + 1 segments), so that the spectrum is evaluated at distinct
frequences ωl = 2π

L
l, where, l = 0, 1, 2, · · · , L− 1.

The the average periodogram is

P̂
(
eiωl
)

=
1

KL

K−1∑
j=0

|Yl(j)|2,

where, Yl(j) =
∑L−1

n=0 X(n+ j)e−inωl .

Minimum Variance is to limit the total output energy 1
K

∑K
j=0 |Yl(j)|2

of the filter. For the sample covariance matrix R̂X , we get minimum
variance power spectrum estimate as the following,

P̂MV

(
eiω
)

=
L

ēR̂−1X e
,

where, e = [1 eiω ei2ω · · · ei(L−1)ω]T . By simulating closely spaced
frequencies in noise, we can estimate minimum variance spectrum as
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shown in Figure 6. Since minimum variance spectrum density is very
sensitive to frequency partitioning selected, we need very fine frequency
spacing to accurately measure power spectrum density.

Figure 6. Minimum Variance Spectrum

In section 3 of this paper, we estimate Hurst parameter H by

Ĥ = 1 +
β̂(q)

q

of Theorem 3.1 and modified R/S statistic. Finally, we figure out ARMA
power spectrum and minimum variance power spectrum density in sec-
tion 4.
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