DOI QR코드

DOI QR Code

A CLASS OF 𝜑-RECURRENT ALMOST COSYMPLECTIC SPACE

  • Balkan, Yavuz Selim (Department of Mathematics, Faculty of Art and Sciences, Duzce University) ;
  • Uddin, Siraj (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Alkhaldi, Ali H. (Department of Mathematics, College of Science, King Khalid University)
  • Received : 2018.01.13
  • Accepted : 2018.04.16
  • Published : 2018.06.25

Abstract

In this paper, we study ${\varphi}$-recurrent almost cosymplectic (${\kappa},{\mu}$)-space and prove that it is an ${\eta}$-Einstein manifold with constant coefficients. Next, we show that a three-dimensional locally ${\varphi}$-recurrent almost cosymplectic (${\kappa},{\mu}$)-space is the space of constant curvature.

Keywords

References

  1. D. Blair and S. I. Goldberg, Topology of almost contact manifolds, J. Diff. Geom., 1(1967), 347-354. https://doi.org/10.4310/jdg/1214428098
  2. D.E. Blair, The theory of quasi-Sasakian structures, J. Diff. Geometry 1 (1967), 331-345. https://doi.org/10.4310/jdg/1214428097
  3. D.E. Blair and S.I. Goldberg, Topology of almost contact manifolds, J. Diff. Geom. 1 (1967), 347-354. https://doi.org/10.4310/jdg/1214428098
  4. D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214. https://doi.org/10.1007/BF02761646
  5. E. Boeckx, A class of locally ${\varphi}$-symmetric contact metris spaces, Arch. Math. 72 (1999), 466-472. https://doi.org/10.1007/s000130050357
  6. E. Boeckx, A full classification of contact metric (k, ${\mu}$)-spaces, Illinois J. Math. 44 (1) (2000), 212-219.
  7. E. Boeckx, P. Buecken and L. Vanhecke, ${\varphi}$-symmetric contact metris spaces, Glasgow Math. J. 41 (1999), no. 3, 409-416. https://doi.org/10.1017/S0017089599000579
  8. A. Carriazo, M. Veronica , The curvature tensor of almost cosymplectic and almost Kenmotsu (k, ${\mu}$, ${\nu}$)-spaces. arXiv:1201.5565v2. https://doi.org/10.1007/s00009-013-0246-4
  9. D. Chinea, and C. Gonzalez, An example of almost cosymplectic homogeneous manifold, in: Lect. Notes Math. Vol. 1209, Springer-Verlag, Berlin-Heildelberg-New York (1986), 133-142.
  10. D. Chinea, M.D. Leon and J.C. Marrero, Topology of cosymplectic manifolds, J. Math. Pures Appl. 72 (1993), 567-591.
  11. D. Chinea, M.D. Leon and J.C. Marrero, Coeffective cohomology on almost cosymplectic manifolds, Bull. Sci. Math. 119 (1995), 3-20.
  12. L.A. Cordero, M. Fernandez and M.D. Leon Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti Sem. Mat. Univ. Modena 34 (1985-86), 43-54.
  13. U.C. De, A. A. Shaikh and S. Biswas, On ${\varphi}$-recurrent Sasakian manifolds, Novisad J. Math. 33 (2003), no. 2, 43-48.
  14. H. Endo, On Ricci curvatures of almost cosymplectic manifolds, An. Stiint. Univ. "Al. I. Cuza" Iasi, Mat. 40 (1994), 75-83.
  15. A. Fujimoto and H. Muto, On cosymplectic manifolds, Tensor N. S. 28 (1974), 43-52.
  16. S.I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pasific J. Math. 31 (1969), 373-382. https://doi.org/10.2140/pjm.1969.31.373
  17. J.-B. Jun, A. Yildiz and U.C. De, ${\varphi}$-Recurrent (k, ${\mu}$)-Contact Metric Manifolds, Bull. Korean Math. Soc. 45 (4) (2008), 689-700. https://doi.org/10.4134/BKMS.2008.45.4.689
  18. V.F. Kirichenko, Almost cosymplectic manifolds satisfying the axiom of ${\Phi}$-holomorphic planes (in Russian), Dokl. Akad. Nauk SSSR 273 (1983), 280-284.
  19. T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), 440-447. https://doi.org/10.4153/CMB-2000-052-6
  20. M.P. Libermann, Sur les automorphismes infinitesimaux des structures symplectiques et des structures de contact, in: Colloque de Geometrie Differentielle Globale (Bruxelles, 1958), Centre Belge de Recherche Mathematiques Louvain (1959), 37-59.
  21. A. Lichnerowicz , Theoremes de reductivite sur des algebres d'automorphismes, Rend. Mat. 22 (1963), 197-244.
  22. Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239-250. https://doi.org/10.2996/kmj/1138036371
  23. Z. Olszak, Almost cosymplectic manifolds with Kahlerian leaves, Tensor N. S. 46 (1987), 117-124.
  24. Z. Olszak, Locally conformal almost cosymplectic manifolds, Coll. Math., 57 (1989), 73-87. https://doi.org/10.4064/cm-57-1-73-87
  25. H. Ozturk, N. Aktan and C. Murathan, Almost ${\alpha}$-cosymplectic (k, ${\mu}$, ${\nu}$)-spaces arXiv:1007.0527v1.
  26. T. Takahashi, Sasakian ${\varphi}$-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91-113. https://doi.org/10.2748/tmj/1178240699