DOI QR코드

DOI QR Code

집중계 해석법을 이용한 달 표면온도 예측

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method

  • 투고 : 2017.09.18
  • 심사 : 2018.02.14
  • 발행 : 2018.04.01

초록

달 주위를 공전하는 탐사위성이나 달착륙선 및 월면차의 열설계에 필요한 환경 인자로써 달 표면온도가 중요하며, 본 연구에서는 에너지방정식을 단순화한 집중계 해석모델을 통하여 온도를 예측하였다. 에너지방정식의 해석에 필요한 물리적 값들은 기하학적 형상을 고려하여 유도하고, 기존의 연구결과에 제시된 값들을 사용하였다. 달 표토층의 가장 중요한 열적 물성치인 면적비열은 LRO에 탑재된 Diviner의 측정온도 분석을 통하여 추출하였으며, 해석모델에 적용함으로써 값을 추정하였다. 수치적분을 통하여 예측한 달 표면온도 분포는 달탐사위성 등의 열설계에 적용할 수 있을 정도의 충분한 정확도를 갖으며, 본 연구에서 제시한 방법을 심화시킨다면 더욱 정확한 온도예측이 가능할 것이다.

The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

키워드

참고문헌

  1. Williams, J.P., Paige, D.A., Greenhagen, B.T., and Stefan-Nash, E., "The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment," Icarus, Vol. 283, 2017, pp. 300-325. https://doi.org/10.1016/j.icarus.2016.08.012
  2. Birkebak, R.C., "Thermophysical properties of lunar materials: Part I; Thermal radiation properties of lunar materials from the Apollo missions," Advances in Heat Transfer, Vol. 10, 1974, pp. 1-37.
  3. Cremers, C.J., "Thermophysical properties of lunar materials: Part II; Heat transfer within the lunar surface layer," Advances in Heat Transfer, Vol. 10, 1974, pp. 39.-83.
  4. Paige, D.A., et al., "The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment," Space Sci. Rev., Vol. 150, 2010, pp. 125-160. https://doi.org/10.1007/s11214-009-9529-2
  5. Bauch, K.E., Hiesinger, H., Helbert, J., Robinson, M.S., and Scholten, F., "Estimation of lunar surface temperatures and thermophysical properties: test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo," Planetary and Space Science, Vol. 101, 2014, pp. 27-36. https://doi.org/10.1016/j.pss.2014.06.004
  6. Prasad, K.D., Rai, V.K., and Murty, S.V.S., "A thermal model to study the effect of top porous layer on subsurface heat flow of the Moon," 46th Lunar and Planetary Science Conference, 2015, 1768.pdf.
  7. Vasavada, A.R., Bandfield, J.L., Greenhagen, B.T., Hayne, P.O., Siegler, M.A., Williams, J.-P., Paige, D.A., 2012, "Lunar equatorial surface temperatures and regolith properties from the diviner lunar radiometer experiment," J. Geophys. Res. Vol. 117, 2012, E00H18.
  8. Hurley, D.M., Sarantos, M., Grava, C., Williams, J.P., Retherford, K.D., Siegler, M., Greenhagen, B., and Paige, D.A., "An analytic function of lunar surface temperature for exospheric modeling," Icarus, Vol. 255, 2015, pp. 159-163. https://doi.org/10.1016/j.icarus.2014.08.043