DOI QR코드

DOI QR Code

이젝터 형상/성능 변수에 따른 이젝터 성능 특성에 관한 연구

A Study on Ejector Performance Characteristics by Ejector Geometry/Performance Variables

  • Choi, Ji-Seon (Department of Aerospace Engineering, Chungnam National University) ;
  • Yu, I-Sang (Department of Aerospace Engineering, Chungnam National University) ;
  • Shin, Dong-Hae (Department of Aerospace Engineering, Chungnam National University) ;
  • Lee, Hee-Jun (Department of Aerospace Engineering, Chungnam National University) ;
  • Ko, Young-Sung (Department of Aerospace Engineering, Chungnam National University)
  • 투고 : 2017.12.21
  • 심사 : 2018.05.09
  • 발행 : 2018.06.01

초록

본 연구에서는 이젝터의 주유동과 부유동의 모멘텀에 따라 형성되는 공기역학적 목에 관한 현상을 관찰하기 위하여 실험, 해석적 연구를 수행하였다. 상온 실험과 상용프로그램인 FLUENT를 이용한 해석을 통하여 주유동의 유량과 이젝터 실린더의 목 직경의 변화에 따른 성능으로 이젝터 성능의 주요 변수인 공기역학적 목의 평형구간을 관찰하였다. 결과적으로 기준 이젝터에서 유량비 변수는 0.33~1.167(탈설계/설계)의 범위, 실린더 목 직경 변수는 1~1.17(탈설계/설계 면적비)의 범위에서 성능 구현이 확인되었다.

In this study, experimental and analytical studies were carried out to observe the phenomenon of aerodynamic throat formed according to the primary flow and secondary flow momentum of the ejector. The equilibrium interval of the aerodynamic throat, which is the main variable of the ejector performance, was observed through the experiment using the cold flow experiment and the analysis using FLUENT. Performance characteristics were investigated by the change of the primary flow rate and the throat diameter of the ejector cylinder. As a result, the performance of the standard ejector was confirmed to be within the range of 0.33~1.167(off-design/design) and cylinder throat diameter range of 1~1.17(off-design/design area ratio).

키워드

참고문헌

  1. Kumar, N. S., and Ooi, K. T., "One Dimensional Model of an Ejector with Special Attention to Fanno Flow within the Mixing Chamber," Applied Thermal Engineering, 2014, pp. 226-235.
  2. Yu, I. S., Kim, T. W., Kim, M. S., Ko, Y. S., and Kim, S. J., "A Study on Design and Performance of an Ejector Using Cold Gas," Journal of the Korean Society of Propulsion Engineers, Vol. 19, No. 2, 2015, pp. 38-45. https://doi.org/10.6108/KSPE.2015.19.2.038
  3. Yoon, S. K., Sung, H. G., and Shin, W. S., "Study on Design Parameters of Supersonic Ejectors," SASE Spring conference, Republic of Korea, 2018, pp. 1-4.
  4. Yoon, S. K., Sung, H. G., and Shin, W. S., "Study on Design Parameters of Supersonic Ejectors," SASE Spring conference, Republic of Korea, 2008, pp. 1-4.
  5. Choi, B. G., Kim, H. D., Lee, J. H., and Kim, D. J., "An Experimental Study of the Subsonic/Supersonic Steam Ejectors," Journal of the Korean Society of Propulsion Engineers, Vol. 4, No. 4, 2000, pp. 1-8.
  6. Yu, I. S., Jeon, J. S., Ko, Y. S., Kim, Y., Kim, S. J., Han, Y. M., and Kim, S. H., "A Study on Performance of an Ejector according to Entrance Gap using Cold Gas," KSPE Spring Conference, Busan, Republic of Korea, May 2013, pp. 378-381.
  7. Chaqing, L., "Gas Ejector Modeling For Design and Analysis," Ph. D Thesis, Texas A&M University, 2008.
  8. Sokolov, E. Ya., and Singer, N. M., "Jet Devices, Jet Devices," 1970.
  9. Addy, A. L., Dutton, J. C., and Mikkelsen, C. D., "Supersonic ejector-diffuser theory and experimants," Report No. UILU-ENG-82-4001, Dept. Mech. and Ind. Eng. University of Illynois at Urbana-Champaign, Utbana, Illinois USA, August 1981.
  10. Fabri, J., and Siestrunck R., "Supersonic Air Ejectors," Advances in Appied Mechanics, Vol. V, 1958, pp. 1-34.
  11. Keenan, J. H., and Neumann, E. P., "An Investigation of Ejector Design by Analysis and Experiment," J. Applied Mechanics, Trans ASME, 72, 1950, pp. 299-309.
  12. Ansys'16 Fluent User's Guide.
  13. Jeong, B. G., Kim, H. J., Jeon, J. S., Ko, Y. S., and Han, Y. M., "Performance Characteristics Under Non-Reacting Condition with Respect to Length of a Subscale Diffuser for High-Altitude Simulation," Journal of the Korean Society of Mechanical Engineers, Vol. 38, No. 4, 2014, pp. 321-328. https://doi.org/10.3795/KSME-B.2014.38.4.321