DOI QR코드

DOI QR Code

Comparison of gut microbiome between low fiber and high fat diet fed mice

저식이섬유 및 고지방 사료 급여 마우스의 장내 미생물 생태 변화

  • Hwang, Nakwon (Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University) ;
  • Eom, Taekil (Subtropical/tropical Organism Gene Bank, Jeju National University) ;
  • Unno, Tatsuya (Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University)
  • Received : 2018.02.02
  • Accepted : 2018.05.03
  • Published : 2018.06.30

Abstract

Due to the recent economic development, the diet style has become more and more westernized in Korea, which increased the concern of our well-beings. Our well-beings are also associated with the gut microbiota which vary depending on the dietary intake. In this study, we compared gut microbiome shifted by two diets: high-fat diets (HFD) and low-fiber diet (LFD) based on 16S rRNA gene sequences using MiSeq. Compared to the control diet, LFD and HFD treatments significantly decreased species richness, while there was no difference in species evenness. Both diet treatments significantly increased the relative abundance of the Proteobacteria (p<0.05), especially the genus Sutterella. Bacteroidetes was significantly decreased in HFD groups, where the family S24-7 was decreased most. On the other hand, significant difference between HFD and LFD was seen among Firmicutes, where the abundance of family Lachnospiraceae was lower in LFD groups (p<0.05). PICRUSt-based metabolic difference analyses showed LFD treatment significantly decreased metabolisms of amino acid, carbohydrate and methane (p<0.01). In contrast, HFD significantly increased amino acid metabolism (p<0.05). Glycan biosynthesis and metabolism were significantly increased in both treatment groups (p<0.01). Our results suggest that long-term unbalanced dietary intakes induce gut dysbiosis, leading to metabolic and colonic disorders.

경제발전으로 인해 한국인의 식습관이 점차 서구화됨에 따라 웰빙(Well-being)의 문제가 야기되고 있다. 웰빙은 장내 미생물 군집과 밀접하게 연관되어 있으며, 이는 섭취한 음식에 따라 가변적이다. 이에 본 연구에서는 장내 미생물의 16S rRNA 유전자를 기반으로 하여 MiSeq을 진행하였고, 고지방 식이(HFD) 및 저식이섬유 식이(LFD)로 인한 장내의 미생물 생태 비교 및 분석하고자 수행되었다. 일반 대조군(CTL) 그룹과 비교하여 각각 LFD 그룹과 HFD 그룹은 species richness가 유의적으로 감소하였고, species evenness에서는 차이가 나타나지 않았다. phylum 수준에서는 Proteobacteria는 두 처리군에서 유의적으로 증가하였고(p<0.05), 그 중 Sutterella genus가 유의적으로 가장 많이 증가하였다. Bacteroidetes는 HFD 그룹에서 유의적으로 감소하였고, S24-7 family가 가장 큰 비율로 감소하였다. 한편 Firmicutes는 HFD:LFD 그룹에서 차이를 보였고, LFD 그룹에서 Lachnospiraceae family가 유의적으로 낮은 비율로 나타난 것이 확인되었다(p<0.05). PICUSt 기반 신진대사 분석에서 LFD 그룹은 아미노산 대사 및 탄수화물 대사에 관여하는 미생물 수가 유의적으로 감소하는 양상을 보였고(p<0.05), 에너지 대사에서는 메탄 대사에 관여하는 미생물이 유의적으로 감소하였다(p<0.01). 한편 HFD 그룹에서는 아미노산 대사에 관여하는 미생물 수가 유의적으로 증가하였다(p<0.05). 글리칸 생합성 및 대사에 관여하는 미생물은 LFD 그룹과 HFD 그룹에서 유의적으로 증가하는 것으로 나타났다(p<0.01). 이상의 결과를 통해 지속적으로 불균형한 식단을 섭취하는 것은 장내 환경을 dysbiosis시켜, 대사성 질환 및 장 기능 저하를 유발할 것으로 예상된다.

Keywords

References

  1. Koo S, Park K (2013) Dietary behaviors and lifestyle characteristics related to frequent eating out among Korean adults. J Korean Soc Food Sci Nutr 42: 705-712 https://doi.org/10.3746/jkfn.2013.42.5.705
  2. Choi, Tae H, Hong, Ki W (2015) A study on dining out and dietary behavioral pattern according to gender of university students. The study of foodservice industry and management 11: 31-50 https://doi.org/10.22509/kfsa.2015.11.2.003
  3. Chooi YL (2013) The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment? Clin Transl Gastroenterol 4: e39 https://doi.org/10.1038/ctg.2013.11
  4. Van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB (2002) Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care 25, 417-424 https://doi.org/10.2337/diacare.25.3.417
  5. Roza NaV, Possignolo LF, Palanch AC, Gontijo JaR (2016) Effect of long-term high-fat diet intake on peripheral insulin sensibility, blood pressure, and renal function in female rats. Food & Nutrition Research 60, 10.3402/fnr.v60.28536
  6. Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin De Chantemele EJ (2017) Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice. Frontiers in Physiology 8: 32
  7. Calligaris SD, Lecanda M, Solis F, Ezquer M, Gutierrez J, Brandan E, Leiva A, Sobrevia L, Conget P (2013) Mice long-term high-fat diet feeding recapitulates human cardiovascular alterations: an animal model to study the early phases of diabetic cardiomyopathy. PLoS One 8: e60931 https://doi.org/10.1371/journal.pone.0060931
  8. Grooms KN, Ommerborn MJ, Pham DQ, Djousse L, Clark CR (2013) Dietary Fiber Intake and Cardiometabolic Risks among US Adults, NHANES 1999-2010. The American Journal of Medicine 126: 1059-1067. e1-4 https://doi.org/10.1016/j.amjmed.2013.07.023
  9. Farvid MS, Eliassen AH, Cho E, Liao X, Chen WY, Willett WC (2016) Dietary Fiber Intake in Young Adults and Breast Cancer Risk. Pediatrics: e20151226.
  10. Singh S, Dulai PS, Zarrinpar A, Ramamoorthy S, Sandborn WJ (2017) Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol 14, 110-121 https://doi.org/10.1038/nrgastro.2016.181
  11. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, Henrissat B, Coutinho PM, Minx P, Latreille P, Cordum H, Van Brunt A, Kim K, Fulton RS, Fulton LA, Clifton SW, Wilson RK, Knight RD, Gordon JI (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5, e156 https://doi.org/10.1371/journal.pbio.0050156
  12. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359 https://doi.org/10.1126/science.1124234
  13. Krajmalnik-Brown R, Ilhan ZE, Kang DW, Dibaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27, 201-214 https://doi.org/10.1177/0884533611436116
  14. Kinross JM, Darzi AW, Nicholson JK (2011) Gut microbiome-host interactions in health and disease. Genome Med 3: 14 https://doi.org/10.1186/gm228
  15. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26: 26191
  16. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestineadapted bacterial symbiont. Science 307, 1955-1959 https://doi.org/10.1126/science.1109051
  17. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America 101: 15718-15723 https://doi.org/10.1073/pnas.0407076101
  18. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, Petersen KF, Kibbey RG, Goodman AL, Shulman GI (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534, 213-217 https://doi.org/10.1038/nature18309
  19. Roewer L, Kayser M, Dieltjes P, Nagy M, Bakker E, Krawczak M, de Knijff P (1996) Analysis of molecular variance (AMOVA) of Ychromosome-specific microsatellites in two closely related human populations. Hum Mol Genet 5, 1029-1033 https://doi.org/10.1093/hmg/5.7.1029
  20. White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5, e1000352 https://doi.org/10.1371/journal.pcbi.1000352
  21. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31, 814-821 https://doi.org/10.1038/nbt.2676
  22. Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715-721 https://doi.org/10.1093/bioinformatics/btq041
  23. Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Muller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Waschke N, Wubet T, Wurst S, Rillig MC (2014) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4, 3514-3524 https://doi.org/10.1002/ece3.1155
  24. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137: 1716-1724 e1-2 https://doi.org/10.1053/j.gastro.2009.08.042
  25. Mukhopadhya I, Hansen R, El-Omar EM, Hold GL (2012) IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol 9, 219-230 https://doi.org/10.1038/nrgastro.2012.14
  26. Balzola F, Cullen G, Ho GT, Russell RK, Wehkamp J (2012) Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances
  27. Hoskins LC (1993) Mucin degradation in the human gastrointestinal tract and its significance to enteric microbial ecology. European Journal of Gastroenterology & Hepatology 5: 205-213 https://doi.org/10.1097/00042737-199304000-00004
  28. Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard Et, Taylor CM, Welsh DA, Berthoud HR (2015) Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 77, 607-615 https://doi.org/10.1016/j.biopsych.2014.07.012
  29. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70: 5810-5817 https://doi.org/10.1128/AEM.70.10.5810-5817.2004
  30. Biddle A, Stewart L, Blanchard J, Leschine S (2013) Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities. Diversity 5: 627 https://doi.org/10.3390/d5030627
  31. Boureau H, Decre D, Carlier JP, Guichet C, Bourlioux P (1993) Identification of a Clostridium cocleatum strain involved in an anti-Clostridium difficile barrier effect and determination of its mucindegrading enzymes. Res Microbiol 144: 405-410 https://doi.org/10.1016/0923-2508(93)90198-B
  32. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, Deeks SG, Hunt PW, Lynch SV, McCune JM (2013) Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 5, 193ra91 https://doi.org/10.1126/scitranslmed.3006438
  33. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213-223 https://doi.org/10.1016/j.chom.2008.02.015
  34. Chen W, Liu F, Ling Z, Tong X, Xiang C (2012) Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One 7: e39743 https://doi.org/10.1371/journal.pone.0039743
  35. Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, Smith MI, Simon GM, Scheffrahn RH, Woebken D, Spormann AM, Van Treuren W, Ursell LK, Pirrung M, Robbins-Pianka A, Cantarel BL, Lombard V, Henrissat B, Knight R, Gordon JI (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159, 253-266 https://doi.org/10.1016/j.cell.2014.09.008
  36. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027-1031 https://doi.org/10.1038/nature05414
  37. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ (2014) Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat dietinduced obesity. PLoS One 9: e92193 https://doi.org/10.1371/journal.pone.0092193
  38. Liu H-X, Rocha CS, Dandekar S, Yvonne Wan Y-J (2016) Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. Journal of Hepatology 64, 641-650 https://doi.org/10.1016/j.jhep.2015.09.022
  39. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217, 133-139 https://doi.org/10.1111/j.1574-6968.2002.tb11467.x
  40. Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS (2015) Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res 142: 23-32
  41. Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2010) Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 299, G1087-1096 https://doi.org/10.1152/ajpgi.00124.2010
  42. Masood MI, Qadir MI, Shirazi JH, Khan IU (2011) Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 37, 91-98 https://doi.org/10.3109/1040841X.2010.536522
  43. Song Y, Liu C, Finegold SM (2004) Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 70, 6459-6465 https://doi.org/10.1128/AEM.70.11.6459-6465.2004
  44. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294, 1-8 https://doi.org/10.1111/j.1574-6968.2009.01514.x
  45. Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74: 13-22 https://doi.org/10.1017/S0029665114001463
  46. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104: 13780-13785 https://doi.org/10.1073/pnas.0706625104
  47. Meehan CJ, Beiko RG (2014) A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tractassociated bacteria. Genome Biol Evol 6, 703-713 https://doi.org/10.1093/gbe/evu050
  48. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6, 1848-1857 https://doi.org/10.1038/ismej.2012.27
  49. Murphy EF, Cotter PD, Healy S, Marques TM, O'Sullivan O, Fouhy F, Clarke SF, O'Toole PW, Quigley EM, Stanton C, Ross PR, O'Doherty RM, Shanahan F (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635-1642 https://doi.org/10.1136/gut.2010.215665
  50. Jensen BB, Jorgensen H (1994) Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl Environ Microbiol 60: 1897-1904
  51. Heinritz SN, Weiss E, Eklund M, Aumiller T, Louis S, Rings A, Messner S, Camarinha-Silva A, Seifert J, Bischoff SC, Mosenthin R (2016) Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet. PLoS One 11: e0154329 https://doi.org/10.1371/journal.pone.0154329
  52. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3: 289-306 https://doi.org/10.4161/gmic.19897
  53. Adams SH (2011) Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2: 445-456 https://doi.org/10.3945/an.111.000737
  54. Gul SS, Hamilton AR, Munoz AR, Phupitakphol T, Liu W, Hyoju SK, Economopoulos KP, Morrison S, Hu D, Zhang W, Gharedaghi MH, Huo H, Hamarneh SR, Hodin RA (2017) Inhibition of the gut enzyme intestinal alkaline phosphatase may explain how aspartame promotes glucose intolerance and obesity in mice. Appl Physiol Nutr Metab 42: 77-83 https://doi.org/10.1139/apnm-2016-0346
  55. Koropatkin NM, Cameron EA, Martens EC (2012) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10, 323-335 https://doi.org/10.1038/nrmicro2746
  56. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, Kitamoto S, Terrapon N, Muller A, Young VB, Henrissat B, Wilmes P, Stappenbeck TS, Nunez G, Martens EC (2016) A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 167: 1339-1353 e21 https://doi.org/10.1016/j.cell.2016.10.043