DOI QR코드

DOI QR Code

DNA Breakage by Salvianolic acid B in the Presence of Cu (II)

구리이온(II)이 존재할 때 Salvianolic acid B에 의한 DNA 절단

  • Lee, Pyeongjae (School of Industrial Bio-pharmaceutical Science, Semyung University) ;
  • Moon, Cheol (Department of Clinical Laboratory Science, Semyung University) ;
  • Choi, Yoon Seon (Department of Cosmetic Science, Semyung University) ;
  • Son, Hyun Kyu (Department of Natural Medicine Resources, Semyung University)
  • 이평재 (세명대학교 바이오제약산업학부) ;
  • 문철 (세명대학교 임상병리학과) ;
  • 최윤선 (세명대학교 화장품과학과) ;
  • 손현규 (세명대학교 자연약재과학과)
  • Received : 2018.02.09
  • Accepted : 2018.05.22
  • Published : 2018.06.30

Abstract

Salvianolic acid B, which is a compound in the Salvia miltiorrhiza, has diverse biological activities, In particular, the antioxidative effects were reported to be involved in the protection of hepatocytes, neurons, and various cell types. On the other hand, some phenolic compounds, such as ferulic acid, which is regarded as an antioxidant, plays a pro-oxidative role in the specific transitional metal environment, which could explain the anticancer effect. This study examined the pro-oxidative effects of salvianolic acid B in the presence of $Cu^{2+}$. Treatment with both salvianolic acid B and $Cu^{2+}$ induced the transition of supercoiled DNA to the open circular or linear form but not in the sole salvianolic acid B or $Cu^{2+}$ treatments. Salvianolic acid B reduced the $Cu^{2+}$ to $Cu^+$ using neocuproine, a $Cu^+$ specific chelator. In addition, catalase, an enzyme that breaks down the $H_2O_2$ to water and molecular oxygen, inhibited the DNA breakage. $H_2O_2$, a reactive oxygen species, has detrimental effects on biological molecules, particularly DNA. Overall, the reduction of $Cu^{2+}$ by salvianolic acid B could lead to the production of $H_2O_2$ followed by DNA breakage. These results suggest that the pro-oxidative effects could be the one of the anti-cancer mechanisms of salvianolic acid B, which remains to be explained.

단삼의 성분인 salvianolic acid B는 다양한 생리활성이 알려져 있다. 특히 항산화 효과는 간세포, 신경세포를 포함한 다양한 세포유형에서 보호효과가 있다고 보고되었다. 하지만 ferulic acid와 같이 항산화제로 여겨지는 몇몇 페놀성 물질은 특정 전이 금속이 있으면 산화작용을 하며 이것이 항암 효능을 설명하기도 한다. 본 실험에서 salvianolic acid B가 $Cu^{2+}$ 환경에서 산화작용을 하는지 알아보았다. salvianolic acid B와 $Cu^{2+}$를 동시 처리하면 supercoilded 형태의 DNA가 open circular 혹은 linear 형태로 바뀌었으나 salvianolic acid B 혹은 $Cu^{2+}$를 단독 처리 했을 때는 그렇지 않았다. $Cu^+$에만 특정적인 킬레이터 neocuproine을 이용하여 salvianolic acid B가 $Cu^{2+}$$Cu^+$로 환원시킴을 알았으며 $H_2O_2$를 물과 산소로 분해하는 catalase를 처리하면 DNA 분해가 일어나지 않았다. 활성산소종 중 하나인 $H_2O_2$는 생체분자 특히 DNA를 공격하여 정상기능을 수행하지 못하게 한다. 정리하면 salvianolic acid B에 의한 $Cu^{2+}$의 환원은 $H_2O_2$를 생성하며 $H_2O_2$는 DNA 분해를 일으킨다. 이런 결과는 salvianolic aicd B의 항암효과가 salvianolic acid의 $H_2O_2$ 생성 때문일 수 있다는 작은 단서를 줄 수 있으며 이는 좀 더 실험이 이뤄져야 한다.

Keywords

References

  1. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res. 1999;31:261-272. https://doi.org/10.1080/10715769900300841
  2. Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta. 2013;1830:3217-3266. https://doi.org/10.1016/j.bbagen.2012.09.018
  3. Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, et al. Antioxidants and human diseases. Clin Chim Acta. 2014;436: 332-347. https://doi.org/10.1016/j.cca.2014.06.004
  4. Murakami K, Haneda M, Qiao S, Naruse M, Yoshino M. Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species. Toxicol In Vitro. 2007;21: 613-617. https://doi.org/10.1016/j.tiv.2006.12.005
  5. Yoshino M, Haneda M, Naruse M, Htay HH, Iwata S, Tsubouchi R, et al. Prooxidant action of gallic acid compoounds: copper-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA. Toxicol In Vitro. 2002;16:705-709. https://doi.org/10.1016/S0887-2333(02)00061-9
  6. Sarwar T, Zafaryab M, Husain MA, Ishqi HM, Rehman SU, Rizvi MM, et al. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism. Toxicol Appl Pharmacol. 2015;289:251-261. https://doi.org/10.1016/j.taap.2015.09.018
  7. Quassinti L, Ortenzi F, Marcantoni E, Ricciutelli M, Lupidi G, Ortenzi C, Buonanno F, et al. DNA binding and oxidative DNA damage induced by climacostol-copper(II) complexes: implications for anticancer properties. Chem Biol Interact. 2013;206:109-116. https://doi.org/10.1016/j.cbi.2013.08.007
  8. Bhat SH, Azmi AS, Hadi SM. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties. Toxicol Appl Pharmacol. 2007;218:249-255. https://doi.org/10.1016/j.taap.2006.11.022
  9. Pang H, Wu L, Tang Y, Zhou G, Qu C, Duan JA. Chemical Analysis of the Herbal Medicine Salviae miltiorrhizae Radix et Rhizoma (Danshen). Molecules. 2016;21:51. https://doi.org/10.3390/molecules21010051
  10. Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB, et al. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol. 2008;40:409-422. https://doi.org/10.1016/j.biocel.2007.08.005
  11. Liu CS, Chen NH, Zhang JT. Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated form Radix Salviae miltiorrhizae. Phytomedicine. 2007;14:492-497. https://doi.org/10.1016/j.phymed.2006.11.002
  12. Zeng W, Shan W, Gao L, Gao D, Hu Y, Wang G, et al. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci Rep. 2015; 5:16013. https://doi.org/10.1038/srep16013
  13. Wu HL, Li YH, Lin YH, Wang R, Li YB, Tie L, et al. Salvianolic acid B protects human endothelial cells from oxidative stress damage: a possible protective role of glucose-regulated protein 78 induction. Cardiovasc Res. 2009; 81:148-158. https://doi.org/10.1093/cvr/cvn262
  14. Zhao GR, Zhang HM, Ye TX, Xiang ZJ, Yuan YJ, Guo ZX, et al. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol. 2008;46:73-81. https://doi.org/10.1016/j.fct.2007.06.034
  15. Biaglow JE, Manevich Y, Uckun F, Held KD. Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. Free Radic Biol Med. 1997;22:1129-1138. https://doi.org/10.1016/S0891-5849(96)00527-8
  16. Lloyd DR, Phillips DH. Oxidative DNA damage mediated copper(II), iron(II) and nickel(II) fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat Res. 1999;424:23-36. https://doi.org/10.1016/S0027-5107(99)00005-6
  17. Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35:32-46. https://doi.org/10.1016/j.ctrv.2008.07.004
  18. Wu CF, Karioti A, Rohr D, Bilia AR, Efferth T. Production of rosmarinic acid and salvianolic acid B from callus culture of Salvia miltiorrhiza with cytotoxicity towards acute lymphoblastic leukemia cells. Food Chem. 2016;201:292-297. https://doi.org/10.1016/j.foodchem.2016.01.054
  19. Guo P, Wang S, Liang W, Wang W, Wang H, Zhao M, et al. Salvianolic acid B reverses multidrug resistance in HCT-8/VCR human colorectal cancer cells by increasing ROS levels. Mol Med Rep. 2017;15:724-730. https://doi.org/10.3892/mmr.2016.6049