DOI QR코드

DOI QR Code

Ameliorative Effects of Ombuoside on Dopamine Biosynthesis in PC12 Cells

  • Received : 2017.09.01
  • Accepted : 2018.02.11
  • Published : 2018.06.30

Abstract

This study investigated the effects of ombuoside, a flavonol glycoside, on dopamine biosynthesis in PC12 cells. Ombuoside at concentrations of 1, 5, and $10{\mu}M$ increased intracellular dopamine levels at 1 - 24 h. Ombuoside (1, 5, and $10{\mu}M$) also significantly increased the phosphorylation of tyrosine hydroxylase (TH) (Ser40) and cyclic AMP-response element binding protein (CREB) (Ser133) at 0.5 - 6 h. In addition, ombuoside (1, 5, and $10{\mu}M$) combined with L-DOPA (20, 100, and $200{\mu}M$) further increased intracellular dopamine levels for 24 h compared to L-DOPA alone. These results suggest that ombuoside regulates dopamine biosynthesis by modulating TH and CREB activation in PC12 cells.

Keywords

References

  1. Fahn, S. Ann. NY Acad. Sci. 2003, 991, 1-14.
  2. Nagatsu, T.; Levitt, M.; Udenfriend, S. J. Biol. Chem. 1964, 239, 2910-2917.
  3. Kilbourne, E. J.; Nankova, B. B.; Lewis, E. J.; McMahon, A.; Osaka, H.; Sabban, D. B.; Sabban, E. L. J. Biol. Chem. 1992, 267, 7563-7569.
  4. Kim, K. S.; Lee, M. K.; Carroll, J.; Joh, T. H. J. Biol. Chem. 1993, 268, 15689-15695.
  5. Campbell, D. G.; Hardie, D. G.; Vulliet, P. R. J. Biol. Chem. 1986, 261, 10489-10492.
  6. Haycock, J. W. Neurochem. Res. 1993, 18, 15-26. https://doi.org/10.1007/BF00966919
  7. Kim, K. S.; Park, D. H.; Wessel, T. C.; Song, B.; Wagner, J. A.; Joh, T. H. Proc. Natl. Acad. Sci. USA. 1993, 90, 3471-3475. https://doi.org/10.1073/pnas.90.8.3471
  8. Marsden, C. D.; Parkes, J. D. Lancet 1977, 1, 345-349.
  9. Migheli, R.; Godani, C.; Sciola, L.; Delogu, M. R.; Serra, P. A.; Zangani, D.; De Natale, G.; Miele, E.; Desole, M. S. J. Neurochem. 1999, 73, 1155-1163.
  10. Jin, C. M.; Yang, Y. J.; Huang, H. S.; Lim, S. C.; Kai, M.; Lee, M. K. Eur. J. Pharmacol. 2008, 591, 88-95. https://doi.org/10.1016/j.ejphar.2008.06.052
  11. Razmovski-Naumovski, V.; Huang, T. H. W.; Tran, V. H.; Li, G. Q.; Duke, C. C.; Roufogalis, B. D. Phytochem. Rev. 2005, 14, 197-219.
  12. Choi, H. S.; Zhao, T. T.; Shin, K. S.; Kim, S. H.; Hwang, B. Y.; Lee, C. K.; Lee, M. K. Molecules 2013, 18, 4342-4356. https://doi.org/10.3390/molecules18044342
  13. Choi, H. S.; Park, M. S.; Kim, S. H.; Hwang, B. Y.; Lee, C. K.; Lee, M. K. Molecules 2010, 15, 2814-2824. https://doi.org/10.3390/molecules15042814
  14. Shin, K. S.; Zhao, T. T.; Park, K. H.; Park, H. J.; Hwang, B. Y.; Lee, C. K.; Lee, M. K. BMC Neurosci. 2015, 16, 23. https://doi.org/10.1186/s12868-015-0163-5
  15. Shin, K. S.; Zhao, T. T.; Choi, H. S.; Hwang, B. Y.; Lee, C. K.; Lee, M. K. Brain Res. 2014, 1567, 57-65. https://doi.org/10.1016/j.brainres.2014.04.015
  16. Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Radic. Biol. Med. 1996, 20, 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  17. Amaro-Luis, J. M.; Adrián, M.; Díaz, C. Ann. Pharm. Fr. 1997, 55, 262-268.
  18. Pollard, S. E.; Kuhnle, G. G.; Vauzour, D.; Vafeiadou, K.; Tzounis, X.; Whiteman, M.; Rice-Evans, C.; Spencer, J. P. Biochem. Biophys. Res. Commun. 2006, 350, 960-968. https://doi.org/10.1016/j.bbrc.2006.09.131
  19. Kumar, S.; Pandey, A. K. Scientific World Journal 2013, 2013, 162750.
  20. Tischler, A. S.; Perlman, R. L.; Morse, G. M.; Sheard, B. E. J. Neurochem. 1983, 40, 364-370. https://doi.org/10.1111/j.1471-4159.1983.tb11291.x
  21. Mosmann, T. J. Immunol. Methods. 1983, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  22. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. L. J. Biol. Chem. 1951, 193, 265-275.
  23. Gonzalez, G. A.; Montminy, M. R. Cell 1989, 59, 675-680. https://doi.org/10.1016/0092-8674(89)90013-5
  24. Basma, A. N.; Morris, E. J.; Nicklas, W. J.; Geller, H. M. J. Neurochem. 1995, 64, 825-832.