DOI QR코드

DOI QR Code

Pre-treatments of initial materials for controlling synthesized TaC characteristics in the SHS process

탄탈륨 카바이드 분말 특성제어를 위한 원료 전처리 기술

  • Sim, Jae Jin (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Choi, Sang Hoon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Park, Ji Hwan (Department of business, Material Technical Innovation Group) ;
  • Park, Il Kyu (Department of advanced materials engineering, Seoul national university and technology) ;
  • Lim, Jae Hong (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Park, Kyoung Tae (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 심재진 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 최상훈 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 박지환 ((주)MTIG) ;
  • 박일규 (서울과학기술대학교 신소재공학과) ;
  • 임재홍 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 박경태 (한국생산기술연구원 한국희소금속산업기술센터)
  • Received : 2018.06.08
  • Accepted : 2018.06.20
  • Published : 2018.06.28

Abstract

We report the feasibility of TaC production via self-propagating high temperature synthesis, and the influence of the initial green compact density on the final composite particle size. Experiments are carried out from a minimum pressure of 0.3 MPa, the pressure at which the initial green body becomes self-standing, up to 3 MPa, the point at which no further combustion occurs. The green density of the pellets varies from 29.99% to 42.97%, as compared with the theoretical density. The increase in green density decreases the powder size of TaC, and the smallest particle size is observed with 1.5 MPa, at $10.36{\mu}m$. Phase analysis results confirm the presence of the TaC phase only. In the range of 0.3-0.5 MPa, traces of unreacted Ta and C residues are detected. However, results also show the presence of only C residue in the matrix within the pressure range of 0.6-3.0 MPa.

Keywords

References

  1. W.Y. Jang: J. Korean Soc. Heat Treat., 13 (2000) 281.
  2. M.Y. Yang: J. of the KSME., 30 (1990) 36.
  3. Hyun-Seon Hong, Jin-Ho Yoon: J. Korean Powder Metall. Inst., 21 (2014) 93. https://doi.org/10.4150/KPMI.2014.21.2.93
  4. Hun-Seok Lee, Hyang-Im Seo, Young-Seon Lee, Dong- Jun Lee, Jei-Pil Wang and Dong-Won Lee: J. Korean Powder Metall. Inst., 24 (2017) 29. (Korean) https://doi.org/10.4150/KPMI.2017.24.1.29
  5. A. Badzian and T. Badzian: Int. J. Refract. Met. Hard Mater., 15 (1997) 3. https://doi.org/10.1016/S0263-4368(96)00047-9
  6. A. Nieto: Scr. Mater., 69 (2013) 678. https://doi.org/10.1016/j.scriptamat.2013.07.030
  7. Z.Zak Fang: Int. J. Refract. Met. Hard Mater., 27 (2009) 288. https://doi.org/10.1016/j.ijrmhm.2008.07.011
  8. Y.J. Chen, J.B. Li, Q.M. Wei and H.Z. Zhai: Mater. Lett., 56 (2002) 279. https://doi.org/10.1016/S0167-577X(02)00455-X
  9. T. Ya. Kosolapova: Carbides: Properties, Production and Applications, Plenum Press, New York (1971).
  10. H. Xiang: Scr. Mater., 55 (2006) 339. https://doi.org/10.1016/j.scriptamat.2006.04.036
  11. N.A. Hassine, J.G.P. Binner and T.E. Cross: Int. J. Refract. Met. Hard Mater., 13 (1995) 353. https://doi.org/10.1016/0263-4368(95)00035-H
  12. Pedro Miguel Amaral, Jorge Cruz Fernandes, Luis Guerra Rosa, Diego Martinez, Jose Rodriquez and Nobumitsu Shohoji: Int. J. Refract. Met. Hard Mater., 18 (2000) 47. https://doi.org/10.1016/S0263-4368(00)00014-7
  13. S.A. Shvab and P.S. Kislyi: Powder Metall Met C+., 13 (1974) 368.
  14. C.L. Yeh and E.W. Liu: J. Alloys Compd., 415 (2006) 66. https://doi.org/10.1016/j.jallcom.2005.07.058
  15. Arvind Varma, Alexander S. Rogachev, Alexander S. Mukasyan, and Stephen Hwang: Adv. Chem. Eng., 24 (1998).