DOI QR코드

DOI QR Code

Preparation of the MnO2/Macroporous Carbon for PET Glycolysis

  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University) ;
  • Yang, MinHo (Department of Energy Engineering, Dankook University)
  • Received : 2018.05.31
  • Accepted : 2018.06.11
  • Published : 2018.06.28

Abstract

Plastic pollution is threatening human health and ecosystems, resulting in one of the biggest challenges that humanity has ever faced. Therefore, this study focuses on the preparation of macroporous carbon from biowaste (MC)-supported manganese oxide ($MnO_2$) as an efficient, reusable, and robust catalyst for the recycling of poly(ethylene terephthalate) (PET) waste. As-prepared $MnO_2/MC$ composites have a hierarchical pore network and a large surface area ($376.16m^2/g$) with a narrow size distribution. $MnO_2/MC$ shows a maximum yield (98%) of bis(2-hydroxyethyl)terephthalate (BHET) after glycolysis reaction for 120 min. Furthermore, $MnO_2/MC$ can be reused at least nine times with a negligible decrease in BHET yield. Based on this remarkable catalytic performance, we expect that $MnO_2$-based heterogeneous catalysts have the potential to be introduced into the PET recycling industry.

Keywords

References

  1. R. Geyer, J. R. Jambeck and K. L. Law: Sci. Adv., 3 (2017) e1700782. https://doi.org/10.1126/sciadv.1700782
  2. K. Muller, E. Bugnicourt, M. Latorre, M. Jorda, Y. E. Sanz, J. M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bolz, G. Perez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castello and M. Schmid: Nanomaterials, 7 (2017) 74. https://doi.org/10.3390/nano7040074
  3. C. M. Rochman, M. A. Browne, B. S. Halpern, B. T. Hentschel, E. Hoh, H. K. Karapanagioti, L. M. Rios-Mendoza, H. Takada, S. Teh and R. C. Thompson: Nature, 494 (2013) 169. https://doi.org/10.1038/494169a
  4. D. Xanthos and T. R. Walker: Mar. Pollut. Bull., 118 (2017) 17. https://doi.org/10.1016/j.marpolbul.2017.02.048
  5. B. Baytekin, H. T. Baytekin and B. A. Grzybowski: Energy Environ. Sci., 6 (2013) 3467. https://doi.org/10.1039/c3ee41360h
  6. A. M. Al-Sabagh, F. Z. Yehia, D. R. K. Harding, G. Eshaq and A E. Elmetwally: Green Chem., 18 (2016) 3997. https://doi.org/10.1039/C6GC00534A
  7. J. Borda, G. Pasztor and M. Zsuga: Polym. Degrad. Stab., 68 (2000) 419. https://doi.org/10.1016/S0141-3910(00)00030-6
  8. D. Kim, B. Kim, Y. Choi, M. Han and B.-S. Kim: Ind. Eng. Chem. Res., 48 (2009) 685. https://doi.org/10.1021/ie8010947
  9. N. George and T. Kurian: Ind. Eng. Chem. Res., 53 (2014) 14185. https://doi.org/10.1021/ie501995m
  10. F. Awaja and D. Pavel: Eur. Polym. J., 41 (2005) 1453. https://doi.org/10.1016/j.eurpolymj.2005.02.005
  11. A. M. Al-Sabagh, F. Z. Yehia, G. Eshaq, A. M. Rabie and A. E. Elmetwally: Egypt. J. Petrol., 25 (2016) 53. https://doi.org/10.1016/j.ejpe.2015.03.001
  12. B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti and M.- M Titirici: Adv. Mater., 22 (2010) 813. https://doi.org/10.1002/adma.200902812
  13. G. Park, L. Bartolome, K. G. Lee, S. J. Lee, D. H. Kim and T. J. Park: Nanoscale, 4 (2012) 3879. https://doi.org/10.1039/c2nr30168g
  14. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing: Pure Appl. Chem., 87 (2015) 1051.
  15. M. Liu, W. W. Tjiu, J. Pan, C. Zhang, W. Gao and T. Liu: Nanoscale, 6 (2014) 4233. https://doi.org/10.1039/c3nr06650a
  16. H.-Q. Wang, J. Chen, S.-J. Hu, X.-H. Zhang, X.-P. Fan, J. Du, Y.-G. Huang and Q.-Y. Li: RSC Adv., 5(2015) 72495. https://doi.org/10.1039/C5RA15464B
  17. X. Song, S. Zhang and D. Zhang: J. Appl. Polym. Sci., 117 (2010) 3155.
  18. Q. Wang, X. Yao, S. Tang, X. Lu, X. Zhang and S. Zhang: Green Chem., 14 (2012) 2559. https://doi.org/10.1039/c2gc35696a
  19. M. Imran, D. H. Kim, W. A. Al-Masry, A. Mahmood, A. Hassan, S. Haider and S. M. Ramay: Polym. Degrad. Stab., 98 (2013) 904. https://doi.org/10.1016/j.polymdegradstab.2013.01.007
  20. G. Eshaq and A. E. ElMetwally: J. Mol. Liq., 214 (2016) 1. https://doi.org/10.1016/j.molliq.2015.11.049