DOI QR코드

DOI QR Code

A Case Study of Heavy Snowfall with Thunder and Lightning in Youngdong Area

뇌전을 동반한 영동지역 대설 사례연구

  • Kim, Hae-Min (Hig-Impact Weather Research Center, Observational and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Jung, Sueng-Pill (Hig-Impact Weather Research Center, Observational and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • In, So-Ra (Hig-Impact Weather Research Center, Observational and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Choi, Byoung-Choel (Hig-Impact Weather Research Center, Observational and Forecast Research Division, National Institute of Meteorological Sciences)
  • 김해민 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • 정승필 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • 인소라 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • 최병철 (국립기상과학원 관측예보연구과 재해기상연구센터)
  • Received : 2018.03.30
  • Accepted : 2018.06.02
  • Published : 2018.06.30

Abstract

The heavy snowfall phenomenon with thunder and lightning occurred in Yeongdong coastal region on 20 January 2017. Amount of snow on that day was a maximum of 47 cm and was concentrated in a short time (2 hours) at the Yeongdong coastal area. The mechanism of thundersnow was investigated to describe in detail using observational data and numerical simulation (Weather Research and Forecast, WRF) applied lightning option. The results show that a convective cloud occurred at the Yeongdong coastal area. The east wind flow was generated and the pressure gradient force was maximized by the rapidly developed cyclone. The cold and dry air in the upper atmosphere has descended (so called tropopause folding) atmospheric lower layer at precipitation peak time (1200 LST). In addition, latent heat in the lower atmosphere layer and warm sea surface temperature caused thermal instability. The convective cloud caused by the strong thermal instability was developed up to 6 km at that time. And the backdoor cold front was determined by the change characteristics of meteorological elements and shear line in the east sea. Instability indexes such as Total totals Index (TT) and Lightning Potential Index (LPI) are also confirmed as one of good predictability indicates for the explosive precipitation of convective rainfall.

Keywords

References

  1. AMS (American Meteorological Society) Glossary, 2000: AMS Glossary of Weather [http://glossary.ametsoc.org/wiki/Main_Page.].
  2. Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental united states. Mon. Wea. Rev., 129, 108-129. https://doi.org/10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2
  3. Caranti, G. M., E. E. Avila, and M. A. Re, 1991: Charge transfer during individual collisions in ice growing from vapor deposition. J. Geophys. Res., 96, 15365-15375. https://doi.org/10.1029/90JD02691
  4. Carr, J. A., 1951: The East Coast "Backdoor" front of May 16-20, 1951. Mon. Wea. Rev., 79, 100-105. https://doi.org/10.1175/1520-0493(1951)079<0100:TECBFO>2.0.CO;2
  5. Chen, S.-J., and L. Dell'osso, 1987: A numerical case study of East Asian coastal cyclogenesis. Mon. Wea. Rev., 115, 477-487. https://doi.org/10.1175/1520-0493(1987)115<0477:ANCSOE>2.0.CO;2
  6. Cho, Y.-J., and T.-Y. Kwon, 2014: Cloud-cell tracking analysis using satellite image of extreme heavy snowfall in the Yeongdong region. Korean J. Remote Sens., 30, 83-107 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.1.8
  7. Crowe, C., P. Market, B. Pettegrew, C. Melick, and J. Podzimek, 2006: An investigation of thundersnow and deep snow accumulations. Geophys. Res. Lett., 33, L24812.
  8. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  9. Dwyer, J. R., and M. A. Uman, 2014: The physics of lightning. Physics Reports, 534, 147-241, doi:10.1016/j.physrep.2013.09.004.
  10. Gyakum, J. R., 1983: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156-1173. https://doi.org/10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2
  11. Halsey, N. G. J., and R. Patton, 1999: Investigation into lightning strikes to helicopters operating over the North Sea. Preprints, 8th Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 259-263.
  12. Hobbs, P. V., 1974: Ice Physics, Clarendon Press, Oxford, 836 pp.
  13. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of the entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  14. KMA, 2012a: Forecaster Intermediate Training Materials. Korea Meteorological Administration, 418 pp.
  15. KMA, 2012b: Rapidly developed cyclone. Korea Meteorological Administration, 8 pp.
  16. KMA, 2015: Thunder & lightning occur cause and predicition. Korea Meteorological Administration, 12 pp.
  17. Ko, A.-R., B.-G. Kim, S.-H. Eun, Y.-S. Park, and B.-C. Choi, 2016: Analysis of the relationship of water vapor with precipitation for the winter ESSAY (Experiment on Snow Storms At Yeongdong) period. Atmosphere, 26, 19-33 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2016.26.1.019
  18. Kumjian, M. R., and W. Deierling, 2015: Analysis of thundersnow storms over northern Colorado. Wea. Forecasting, 30, 1469-1490, doi:10.1175/WAF-D-15-0007.1.
  19. Kuo, Y.-H., J. R. Gyakum, and Z. Guo, 1995: A case of rapid continental mesoscale cyclogenesis. part 1: Model sensitivity experiments. Mon. Wea. Rev., 123, 970-997. https://doi.org/10.1175/1520-0493(1995)123<0970:ACORCM>2.0.CO;2
  20. Kwon, T.-Y., J.-Y. Park, B.-C. Choi, and S.-O. Han, 2015: Satellite image analysis of low-level stratiform cloud related with the heavy snowfall events in the Yeongdong region. Atmosphere, 25, 577-589 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.4.577
  21. Lee, J. G., and Y.-J. Kim, 2008: A numerical case study examining the orographic effect of the taebaek mountains on snowfall distribution over the Yeongdong area. Atmoshpere, 18, 367-386 (in Korean with English abstract).
  22. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of and effective Double-Moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1.
  23. MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.
  24. Market, P. S., C. E. Halcomb, and R. L. Ebert, 2002: A climatology of thundersnow events over the contiguous United States. Wea. Forecasting, 17, 1290-1295. https://doi.org/10.1175/1520-0434(2002)017<1290:ACOTEO>2.0.CO;2
  25. Market, P. S., A. M. Oravetz, D. Gaede, E. Bookbinder, R. Ebert, and C. Melick, 2004: Upper air constant pressure composites of midwestern thundersnow events, 20th Conference on Weather Analysis and Forecasting, Seattle, WA, Amer. Meteor. Soc., P4.6 [https://ams.confex.com/ams/84Annual/webprogram/20WAF16NW.html.].
  26. Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Mon. Wea. Rev., 127, 70-88. https://doi.org/10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2
  27. Miller, R. C., 1972: Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Central. AWS Tech. Rep. 200 (rev.). Headquarters, Air Weather Service, Scott Air Force Base, IL, 190 pp.
  28. Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206-209. https://doi.org/10.1038/nature06690
  29. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  30. Moore, J. T., and P. D. Blakley, 1988: The role of frontogenetical forcing and conditional symmetric instability in the Midwest snowstorm of 30-31 January 1982. Mon. Wea. Rev., 116, 2155-2171. https://doi.org/10.1175/1520-0493(1988)116<2155:TROFFA>2.0.CO;2
  31. Nam, H.-G., B.-G. Kim, S.-O. Han, C. Lee, and S.-S. Lee, 2014: Characteristics of easterly-induced snowfall in Yeongdong and its relationship to air-sea temperature difference. Asia-Pacific J. Atmos. Sci., 50, 541-552, doi:10.1007/s13143-014-0044-3.
  32. National Severe Storms Laboratory, 2006: A Severe Weather Primer: Questions and Answers about Thunderstorms. National Oceanic and Atmospheric Administration. Retrieved, 2009-09-01.
  33. Nicosia, D. J., and R. H. Grumm, 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346-368. https://doi.org/10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2
  34. Roebber, P. J., 1993: A diagnostic case study of self-development as an antecedent conditioning process in explosive cyclogenesis. Mon. Wea. Rev., 121, 976-1006. https://doi.org/10.1175/1520-0493(1993)121<0976:ADCSOS>2.0.CO;2
  35. Rudlosky, S. D., and H. E. Fuelberg, 2013: Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 3186-3202, doi:10.1175/MWR-D-12-00287.1.
  36. Saunders, C. P. R., 2008: Charge separation mechanisms in clouds, Space Sci. Rev., 137, 335-353. https://doi.org/10.1007/s11214-008-9345-0
  37. Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res., 103, 13949-13956. https://doi.org/10.1029/97JD02644
  38. Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 2543-2563. https://doi.org/10.1175/2009JAMC2237.1
  39. Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744-755, doi:10.1175/WAF-D-10-05026.1.
  40. Schultz, D. M., 1999: Lake-effect snowstorms in northern Utah and western New York with and without lightning. Wea. Forecasting, 14, 1023-1031. https://doi.org/10.1175/1520-0434(1999)014<1023:LESINU>2.0.CO;2
  41. Seo, W.-S., and Coauthors, 2016: Intercomparison between temperature and humidity sensors of radiosonde by different manufactures in the ESSAY (Experiment on Snow Storms At Yeongdong) campaign. Atmosphere, 26, 347-356, doi:10.14191/Atmos.2016.26.2.347 (in Korean with English abstract).
  42. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note TN-475+STR, 125 pp.
  43. Steenburgh, W. J., S. F. Halvorson, and D. J. Onton, 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128, 709-727. https://doi.org/10.1175/1520-0493(2000)128<0709:COLESO>2.0.CO;2
  44. Steiger, S. M., R. Hamilton, J. Keeler, and R. E. Orville, 2009: Lake-effect thunderstorms in the lower Great Lakes. J. Appl. Meteor. Climatol., 48, 889-902. https://doi.org/10.1175/2008JAMC1935.1
  45. Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536-1548. https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
  46. Uccellini, L. W., R. A. Petersen, P. J. Kocin, K. F. Brill, and J. J. Tuccillo, 1987: Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 2227-2261. https://doi.org/10.1175/1520-0493(1987)115<2227:SIBAUL>2.0.CO;2
  47. WMO (World Meteorological Organization), 1986: Atmospheric Ozone 1985: Global Ozone Research and Monitoring Report. Rep. No. 16, WMO, Geneva, Switzerland, 392 pp.
  48. Yair, Y., B. Lynn, C. Price, V. Kotroni, K. Lagouvardos, E. Morin, A. Mugnai, and M. d. C. Llasat, 2010: Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. J. Geophys. Res., 115, D04205, doi:10.1029/2008JD010868.