DOI QR코드

DOI QR Code

Design of flux pinning property in REBCO coated conductors with artificial pinning centers

  • Matsushita, Teruo (Department of Computer Science and Electronics Kyushu Institute of Technology) ;
  • Kiuchi, Masaru (Department of Computer Science and Electronics Kyushu Institute of Technology)
  • Received : 2018.02.21
  • Accepted : 2018.03.04
  • Published : 2018.03.31

Abstract

The improvement of critical current properties of $REBa_2Cu_3O_{7-x}$ (REBCO) coated conductors by introducing artificial pinning centers (APCs) is examined with respect to the field-angle anisotropy, high-field performance and relaxation property with time. Nano-rods along the c-axis introduced by PLD method and isotropic nano-particles introduced by TFA-MOD method are treated. The theoretical analysis is also shown to understand the effect of APCs quantitatively. The effects of superconducting layer thickness that influences the high-field performance and relaxation property are also discussed. It is shown that the upper critical field, which is another important factor to determine the high-field property, can be improved by introduction of APCs through electron scattering at interfaces with the superconducting matrix. The optimum critical current property can be obtained by properly designing the morphology and number density of APCs and the superconducting layer thickness.

Keywords

References

  1. J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley and D. E. Peterson, Nature, vol. 3, pp. 439, 2004. https://doi.org/10.1038/nmat1156
  2. A. Goyal, S. Kang, K. J. Leonard, P. M. Martin, A. A. Gapud, M. Varela, M. Parathaman, A. O. Ijadoula, E. D. Specht, J. R. Thompson, D. K. Cristen, S. J. Pennycook and F. A. List, Supercond. Sci. Technol., vol. 18, pp. 1533, 2005. https://doi.org/10.1088/0953-2048/18/11/021
  3. M. Peurla, H. Huhtinen, M. A. Shakhov, K. Traito, Yu. P. Stepanov, M. Safonchik, P. Paturi, Y. Y. Tse, R. Palai and R. Laiho, Phys. Rev. B, vol. 75, pp. 184524, 2007. https://doi.org/10.1103/PhysRevB.75.184524
  4. S. H. Wee, A. Goyal, J. Li, Y. L. Zuev, S. Cook and L. Heatherly, Supercond. Sci. Technol., vol. 20, pp. 789, 2007. https://doi.org/10.1088/0953-2048/20/8/012
  5. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii and R. Kita, Supercond. Sci. Technol., vol. 21, pp. 032002, 2008. https://doi.org/10.1088/0953-2048/21/3/032002
  6. H. Tobita, K. Notoh, K. Higashikawa, M. Inoue, T. Kiss, T. Kato, T. Hirayama, M. Yoshizumi, T. Izumi and Y. Shiohara, Supercond. Sci. Technol., vol. 25, pp. 062002, 2012. https://doi.org/10.1088/0953-2048/25/6/062002
  7. S. Engel, T. Thersleff, R. H hne, L. Schultz and B. Holzapfel, Appl. Phys. Lett., vol. 90, pp. 102505, 2007. https://doi.org/10.1063/1.2711761
  8. T. Aytug, M. Paranthaman, E. D. Specht, Y. Zhang, K. Kim, Y. L. Zuev, C. Cantoni, A. Goyal, D. K. Christen, V. A. Maroni, Y. Chen and V. Selvamanickam, Supercond. Sci. Technol., vol. 23, pp. 014006, 2010. https://doi.org/10.1088/0953-2048/23/1/014006
  9. A. Palau, E. Bartolome, A. Llordes, T. Puig and X. Obradors, Supercond. Sci. Technol., vol. 24, pp. 125010, 2011. https://doi.org/10.1088/0953-2048/24/12/125010
  10. M. Miura, B. Maiorov, J. O. Willis, T. Kato, M. Sato, T. Izumi, Y. Shiohara and L. Civale, Supercond. Sci. Technol., vol. 26, pp. 035008, 2013. https://doi.org/10.1088/0953-2048/26/3/035008
  11. See for example, V. Selvamanickam, M. H. Gharahcheshmeh, A. Xu, Y. Zhang and E. Galstyan, Supercond. Sci. Technol., vol. 28, pp. 072002, 2015. https://doi.org/10.1088/0953-2048/28/7/072002
  12. M. Kiuchi, K. Noguchi, T. Matsushita, T. Kato, T. Hikata and K. Sato, Physica C, vol. 278, pp. 62, 1997. https://doi.org/10.1016/S0921-4534(97)00102-0
  13. R. Labusch, Crystal Lattice Defects, vol. 1, pp. 1, 1969.
  14. E. J. Kramer, J. Nucl. Mater., vol. 72, pp. 5, 1978. https://doi.org/10.1016/0022-3115(78)90385-9
  15. A. M. Campbell, Phil. Mag. B, vol. 37, pp. 149, 1978. https://doi.org/10.1080/01418637808226649
  16. A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys., vol. 34, pp. 409, 1979. https://doi.org/10.1007/BF00117160
  17. T. Matsushita and K. Yamafuji, J. Phys. Soc. Jpn., vol. 48, pp. 1885, 1980. https://doi.org/10.1143/JPSJ.48.1885
  18. T. Matsushita, Physica C, vol. 243, pp. 312, 1995. https://doi.org/10.1016/0921-4534(95)00028-3
  19. T. Matsushita, N. Harada and K. Yamafuji, Cryogenics, vol. 29, pp. 328, 1989. https://doi.org/10.1016/0011-2275(89)90181-1
  20. T. Matsushita, J. Phys. Soc. Jpn., vol. 84, pp. 034705, 2015. https://doi.org/10.7566/JPSJ.84.034705
  21. F. Matsutani, K. Himeki, M. Kiuchi, E. S. Otabe, T. Matsushita, S. Miyata, A. Ibi, Y. Yamada and Y. Shiokara, Physica C, vol. 469, pp. 1122, 2009. https://doi.org/10.1016/j.physc.2009.05.238
  22. K. Kaneko, K. Furuya, K. Yamada, S. Sadayama, J. S. Barnard, P. A. Midgley, T. Kato, T. Hirayama, M. Kiuchi, T. Matsushita, A. Ibi, Y. Yamada, T. Izumi and Y. Shiohara, J. Appl. Phys., vol. 108, pp. 063901, 2010. https://doi.org/10.1063/1.3486213
  23. F. Matsutani, Y. Takahashi, M. Kiuchi, E. S. Otabe, T. Matsushita, M. Miura, T. Izumi and Y. Shiohara, Physica C, vol. 470, pp. 1411, 2010. https://doi.org/10.1016/j.physc.2010.05.125
  24. T. Matsushita, H. Nagamizu, K. Tanabe, M. Kiuchi, E. S. Otabe, H. Tobita, M. Yoshizumi, T. Izumi, Y. Shiohara, D. Yokoe, T. Kato and T. Hirayama, Supercond. Sci. Technol., vol.25, pp. 125003, 2012. https://doi.org/10.1088/0953-2048/25/12/125003
  25. T. Matsushita, "Flux Pinning in Superconductors," Springer, 2014, see Sec. 3.8.
  26. T. Matsushita, T. Fujiyoshi, K. Toko and K. Yamafuji, Appl. Phys. Lett., vol. 56, pp. 2039, 1990. https://doi.org/10.1063/1.103011
  27. T. Matsushita, Physica C, vol. 217, pp. 461, 1993. https://doi.org/10.1016/0921-4534(93)90350-Y
  28. K. Himeki, M. Kiuchi, E. S. Otabe, T. Matsushita, K. Shikimachi, T. Watanabe, N. Kashima, S. Nagaya, Y. Yamada and Y. Shiohara, Physica C, vol. 469, pp. 1457, 2009. https://doi.org/10.1016/j.physc.2009.05.064
  29. M. Miura, B. Maiorov, M. Sato, M. Kanai, T. Kato, T. Kato, T. Izumi, S. Awaji, P. Mele, M. Kiuchi and T.Matsushita, NPG Asia Materials, vol. 9, pp. e444, 2017. https://doi.org/10.1038/am.2017.161
  30. T. Matsushita and M. Kiuchi, TEION KOGAKU (J. Cryo. Super. Soc. Jpn.), vol. 49, pp. 91, 2014 [in Japanese].
  31. A. M. Campbell, J. E. Evetts and D. Dew-Hughes, Philos. Mag., vol. 18, pp. 313, 1968. https://doi.org/10.1080/00318086.1968.11716235
  32. T. Matsushita, M. Kiuchi, T. Haraguchi, T. Imada, K. Okumura, S. Okayasu, S. Uchida, J. Shimoyama and K. Kishio, Supercon. Sci. Technol., vol. 19, pp. 200, 2006. https://doi.org/10.1088/0953-2048/19/2/008
  33. A. M. Campbell and J. E. Evetts, Adv. Phys., vol. 90, pp. 199, 1972 (see pp. 359).
  34. A. Tsuruta, Y. Yoshida, Y. Ichino, S. Sota, A. Ichinose, K. Matsumoto and S. Awaji, TEION KOGAKU (J. Cryo. Super. Soc. Jpn.), vol. 50, pp. 224, 2015 [in Japanese].
  35. T. Matsushita, K. Kimura, M. Kiuchi, E. S. Otabe , Y. Yamada and Y. Shiohara, Supercond. Sci. Technol., vol. 20, pp. S189, 2007. https://doi.org/10.1088/0953-2048/20/9/S12
  36. T. Matsushita, H. Nagamizu, K. Tanabe, M. Kiuchi, E. S. Otabe, H. Tobita, M. Yoshimizu, T. Izumi, Y. Shiohara, D. Yokoe, T. Kato and T. Hirayama, IEEE Trans. Appl. Supercond., vol. 23, pp. 8000304, 2013. https://doi.org/10.1109/TASC.2012.2231458
  37. E. H. Brandt, Phys. Rev. B, vol. 34, pp. 6514, 1986. https://doi.org/10.1103/PhysRevB.34.6514