DOI QR코드

DOI QR Code

IL-1 Receptor Antagonist Reduced Chemical-Induced Keratinocyte Apoptosis through Antagonism to IL-1α/IL-1β

  • Lee, Hyejin (Department of Dermatology, Dongguk University Seoul, Graduate School of Medicine) ;
  • Cheong, Kyung Ah (Department of Dermatology, Dongguk University Seoul, Graduate School of Medicine) ;
  • Kim, Ji-Young (Department of Dermatology, Dongguk University Seoul, Graduate School of Medicine) ;
  • Kim, Nan-Hyung (Department of Dermatology, Dongguk University Seoul, Graduate School of Medicine) ;
  • Noh, Minsoo (Department of Pharmacy, College of Pharmacy, Seoul National University) ;
  • Lee, Ai-Young (Department of Dermatology, Dongguk University Seoul, Graduate School of Medicine)
  • 투고 : 2017.08.21
  • 심사 : 2017.10.17
  • 발행 : 2018.07.01

초록

Extracellular interleukin 1 alpha (IL-$1{\alpha}$) released from keratinocytes is one of the endpoints for in vitro assessments of skin irritancy. Although cells dying via primary skin irritation undergo apoptosis as well as necrosis, IL-$1{\alpha}$ is not released in apoptotic cells. On the other hand, active secretion has been identified in interleukin-1 receptor antagonist (IL-1ra), which was discovered to be a common, upregulated, differentially-expressed gene in a microarray analysis performed with keratinocytes treated using cytotoxic doses of chemicals. This study examined whether and how IL-1ra, particularly extracellularly released IL-1ra, was involved in chemically-induced keratinocyte cytotoxicity and skin irritation. Primary cultured normal adult skin keratinocytes were treated with cytotoxic doses of chemicals (hydroquinone, retinoic acid, sodium lauryl sulfate, or urshiol) with or without recombinant IL-1ra treatment. Mouse skin was administered irritant concentrations of hydroquinone or retinoic acid. IL-1ra (mRNA and/or intracellular/extracellularly released protein) levels increased in the chemically treated cultured keratinocytes with IL-$1{\alpha}$ and IL-$1{\beta}$ mRNAs and in the chemically exposed epidermis of the mouse skin. Recombinant IL-1ra treatment significantly reduced the chemically-induced apoptotic death and intracellular/extracellularly released IL-$1{\alpha}$ and IL-$1{\beta}$ in keratinocytes. Collectively, extracellular IL-1ra released from keratinocytes could be a compensatory mechanism to reduce the chemically-induced keratinocyte apoptosis by antagonism to IL-$1{\alpha}$ and IL-$1{\beta}$, suggesting potential applications to predict skin irritation.

키워드

참고문헌

  1. Aksentijevich, I., Masters, S. L., Ferguson, P. J., Dancey, P., Frenkel, J., van Royen-Kerkhoff, A., Laxer, R., Tedgard, U., Cowen, E. W., Pham, T. H., Booty, M., Estes, J. D., Sandler, N. G., Plass, N., Stone, D. L., Turner, M. L., Hill, S., Butman, J. A., Schneider, R., Babyn, P., El-Shanti, H. I., Pope, E., Barron, K., Bing, X., Laurence, A., Lee, C. C., Chapelle, D., Clarke, G. I., Ohson, K., Nicholson, M., Gadina, M., Yang, B., Korman, B. D., Gregersen, P. K., van Hagen, P. M., Hak, A. E., Huizing, M., Rahman, P., Douek, D. C., Remmers, E. F., Kastner, D. L. and Goldbach-Mansky, R. (2009) An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N. Engl. J. Med. 360, 2426-2437. https://doi.org/10.1056/NEJMoa0807865
  2. Arend, W. P., Malyak, M., Guthridge, C. J. and Gabay, C. (1998) Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27-55. https://doi.org/10.1146/annurev.immunol.16.1.27
  3. Arend, W. P. and Guthridge, C. J. (2000) Biological role of interleukin 1 receptor antagonist isoforms. Ann. Rheum. Dis. 59, i60-i64. https://doi.org/10.1136/ard.59.suppl_1.i60
  4. Bernhofer, L. P., Barkovic, S., Appa, Y. and Martin, K. M. (1999) IL-1alpha and IL-1ra secretion from epidermal equivalents and the prediction of the irritation potential of mild soap and surfactant-based consumer products. Toxicol. In vitro 13, 231-239. https://doi.org/10.1016/S0887-2333(98)00088-5
  5. Cohen, I., Rider, P., Carmi, Y., Braiman, A., Dotan, S., White, M. R., Voronov, E., Martin, M. U., Dinarello, C. A. and Apte, R. N. (2010) Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc. Natl. Acad. Sci. U.S.A. 107, 2574-2579. https://doi.org/10.1073/pnas.0915018107
  6. Conti, P., Barbacane, R. C., Trakatellis, M., Placido, F. C., Cataldo, I. and Reale, M. (1997) Influence of interleukin-1 receptor antagonist on [3H]serotonin and histamine release by rat basophilic leukemia-2H3 cells. Ann. N. Y. Acad. Sci. 832, 223-232. https://doi.org/10.1111/j.1749-6632.1997.tb46250.x
  7. Coquette, A., Berna, N., Vandenbosch, A., Rosdy, M. and Poumay, Y. (1999) Differential expression and release of cytokines by an in vitro reconstructed human epidermis following exposure to skin irritant and sensitizing chemicals. Toxicol. In vitro 13, 867-877. https://doi.org/10.1016/S0887-2333(99)00076-4
  8. Corradi, A., Franzi, A. T. and Rubartelli, A. (1995) Synthesis and secretion of interleukin-1 alpha and interleukin-1 receptor antagonist during differentiation of cultured keratinocytes. Exp. Cell Res. 217, 355-362. https://doi.org/10.1006/excr.1995.1097
  9. Corsini, E. and Galli, C. L. (1998) Cytokines and irritant contact dermatitis. Toxicol. Lett. 102-103, 277-282. https://doi.org/10.1016/S0378-4274(98)00323-3
  10. De Jongh, C. M., Verberk, M. M., Withagen, C. E., Jacobs, J. J., Rustemeyer, T. and Kezic, S. (2006) Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate. Contact Derm. 54, 325-333. https://doi.org/10.1111/j.0105-1873.2006.00848.x
  11. Fink, G. W. and Norman, J. G. (1997) Specific changes in the pancreatic expression of the interleukin 1 family of genes during experimental acute pancreatitis. Cytokine 9, 1023-1027. https://doi.org/10.1006/cyto.1997.0260
  12. Grimstad, O., Husebye, H. and Espevik, T. (2013) TLR3 mediates release of IL-$1{\beta}$ and cell death in keratinocytes in a caspase-4 dependent manner. J. Dermatol. Sci. 72, 45-53. https://doi.org/10.1016/j.jdermsci.2013.05.006
  13. Kanerva, L. (1990) Electron microscopic observations of dyskeratosis, apoptosis, colloid bodies and fibrillar degeneration after skin irritation with dithranol. J. Cutan. Pathol. 17, 37-44. https://doi.org/10.1111/j.1600-0560.1990.tb01676.x
  14. Kidd, D. A., Johnson, M. and Clements, J. (2007) Development of an in vitro corrosion/irritation prediction assay using the EpiDerm skin model. Toxicol. In vitro 21, 1292-1297. https://doi.org/10.1016/j.tiv.2007.08.018
  15. Lopez-Castejon, G. and Brough, D. (2011) Understanding the mechanism of IL-$1{\beta}$ secretion. Cytokine Growth Factor Rev. 22, 189-195. https://doi.org/10.1016/j.cytogfr.2011.10.001
  16. Matsubayashi, T., Sakaeda, T., Kita, T., Kurimoto, Y., Nakamura, T., Nishiguchi, K., Fujita, T., Kamiyama, F., Yamamoto, A. and Okumura, K. (2003) Intradermal concentration of hydroquinone after application of hydroquinone ointments is higher than its cytotoxic concentration. Biol. Pharm. Bull. 26, 1365-1367. https://doi.org/10.1248/bpb.26.1365
  17. Muller-Decker, K., Furstenberger, G. and Marks, F. (1994) Keratinocyte-derived proinflammatory key mediators and cell viability as in vitro parameters of irritancy: a possible alternative to the Draize skin irritation test. Toxicol. Appl. Pharmacol. 127, 99-108. https://doi.org/10.1006/taap.1994.1144
  18. Nistico, S., Paolillo, N., Minella, D., Piccirilli, S., Rispoli, V., Giardina, E., Biancolella, M., Chimenti, S., Novelli, G. and Nistico, G. (2010) Effects of TNF-${\alpha}$ and IL-$1{\beta}$ on the activation of genes related to inflammatory, immune responses and cell death in immortalized human HaCat keratinocytes. Int. J. Immunopathol. Pharmacol. 23, 1057-1072. https://doi.org/10.1177/039463201002300410
  19. Noble, S. and Wagstaff, A. J. (1995) Tretinoin. A review of its pharmacological properties and clinical efficacy in the topical treatment of photodamaged skin. Drugs Aging 6, 479-496. https://doi.org/10.2165/00002512-199506060-00008
  20. Osborne, R. and Perkins, M. A. (1991) In vitro skin irritation testing with human skin cell cultures. Toxicol. In vitro 5, 563-567. https://doi.org/10.1016/0887-2333(91)90094-T
  21. Perkins, M. A., Osborne, R., Rana, F. R., Ghassemi, A. and Robinson, M. K. (1999) Comparison of in vitro and in vivo human skin responses to consumer products and ingredients with a range of irritancy potential. Toxicol. Sci. 48, 218-229. https://doi.org/10.1093/toxsci/48.2.218
  22. Perkins, M. A., Osterhues, M. A., Farage, M. A. and Robinson, M. K. (2001) A noninvasive method to assess skin irritation and compromised skin conditions using simple tape adsorption of molecular markers of inflammation. Skin Res. Technol. 7, 227-237. https://doi.org/10.1034/j.1600-0846.2001.70405.x
  23. Samuel, M., Brooke, R. C., Hollis, S. and Griffiths, C. E. (2005) Interventions for photodamaged skin. Cochrane Database Syst. Rev. (1), CD001782.
  24. Stratigos, A. J. and Katsambas, A. D. (2005) The role of topical retinoids in the treatment of photoaging. Drugs 65, 1061-1072. https://doi.org/10.2165/00003495-200565080-00003
  25. Vecile, E., Dobrina, A., Salloum, F. N., Van Tassell, B. W., Falcione, A., Gustini, E., Secchiero, S., Crovella, S., Sinagra, G., Finato, N., Nicklin, M. J. and Abbate, A. (2013) Intracellular function of interleukin-1 receptor antagonist in ischemic cardiomyocytes. PLoS ONE 8, e53265. https://doi.org/10.1371/journal.pone.0053265
  26. Wang, Z., Coleman, D. J., Bajaj, G., Liang, X., Ganguli-Indra, G. and Indra, A. K. (2011) $RXR{\alpha}$ ablation in epidermal keratinocytes enhances UVR-induced DNA damage, apoptosis, and proliferation of keratinocytes and melanocytes. J. Invest. Dermatol. 131, 177-187. https://doi.org/10.1038/jid.2010.290
  27. Yoshihisa, Y., Rehman, M. U. and Shimizu, T. (2014) Astaxanthin, a xanthophyll carotenoid, inhibits ultraviolet-induced apoptosis in keratinocytes. Exp. Dermatol. 23, 178-183. https://doi.org/10.1111/exd.12347
  28. Zheng, Y., Humphry, M., Maguire, J. J., Bennett, M. R. and Clarke, M. C. (2013) Intracellular interleukin-1 receptor 2 binding prevents cleavage and activity of interleukin-$1{\alpha}$, controlling necrosis-induced sterile inflammation. Immunity 38, 285-295. https://doi.org/10.1016/j.immuni.2013.01.008

피인용 문헌

  1. A Novel Butylated Caffeic Acid Derivative Protects HaCaT Keratinocytes from Squalene Peroxidation-Induced Stress vol.32, pp.6, 2018, https://doi.org/10.1159/000501731
  2. Marine Compound 3-Bromo-4,5-dihydroxybenzaldehyde Protects Skin Cells against Oxidative Damage via the Nrf2/HO-1 Pathway vol.17, pp.4, 2019, https://doi.org/10.3390/md17040234
  3. A long-wave UVA filter avobenzone induces obesogenic phenotypes in normal human epidermal keratinocytes and mesenchymal stem cells vol.93, pp.7, 2018, https://doi.org/10.1007/s00204-019-02462-1
  4. Juxtaposition of IL-1β and IFN-γ expression and apoptosis of keratinocytes in adult-onset Still’s disease vol.15, pp.12, 2019, https://doi.org/10.1080/1744666x.2020.1685876
  5. Intracellular IL-1 Receptor Antagonist Isoform 1 Released from Keratinocytes upon Cell Death Acts as an Inhibitor for the Alarmin IL-1α vol.204, pp.4, 2018, https://doi.org/10.4049/jimmunol.1901074
  6. Characterization of a Novel Interleukin-1 Receptor Antagonist from Sheep ( Ovis aries ) vol.40, pp.5, 2020, https://doi.org/10.1089/jir.2019.0182
  7. IL-1 Family Antagonists in Mouse and Human Skin Inflammation vol.12, pp.None, 2018, https://doi.org/10.3389/fimmu.2021.652846
  8. Hydroquinone Induces NLRP3-Independent IL-18 Release from ARPE-19 Cells vol.10, pp.6, 2018, https://doi.org/10.3390/cells10061405