DOI QR코드

DOI QR Code

Molecular and Functional Characterization of Choline Transporter-Like Proteins in Esophageal Cancer Cells and Potential Therapeutic Targets

  • Nagashima, Fumiaki (Department of Anesthesiology, Tokyo Medical University) ;
  • Nishiyama, Ryohta (Department of Anesthesiology, Tokyo Medical University) ;
  • Iwao, Beniko (Department of Psychiatry, Tokyo Medical University) ;
  • Kawai, Yuiko (Institute of Medical Science, Tokyo Medical University) ;
  • Ishii, Chikanao (Institute of Medical Science, Tokyo Medical University) ;
  • Yamanaka, Tsuyoshi (Department of Molecular Preventive Medicine, Tokyo Medical University) ;
  • Uchino, Hiroyuki (Department of Anesthesiology, Tokyo Medical University) ;
  • Inazu, Masato (Institute of Medical Science, Tokyo Medical University)
  • 투고 : 2017.05.30
  • 심사 : 2017.07.28
  • 발행 : 2018.07.01

초록

In this study, we examined the molecular and functional characterization of choline uptake in the human esophageal cancer cells. In addition, we examined the influence of various drugs on the transport of [$^3H$]choline, and explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. We found that both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were highly expressed in esophageal cancer cell lines (KYSE series). CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is both $Na^+$-independent and pH-dependent. Choline uptake and cell viability were inhibited by various cationic drugs. Furthermore, a correlation analysis of the potencies of 47 drugs for the inhibition of choline uptake and cell viability showed a strong correlation. Choline uptake inhibitors and choline deficiency each inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be involved in choline uptake in mitochondria, which is the rate-limiting step in S-adenosylmethionine (SAM) synthesis and DNA methylation. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for esophageal cancer therapy.

키워드

참고문헌

  1. Ackerstaff, E., Glunde, K. and Bhujwalla, Z. M. (2003) Choline phospholipid metabolism: a target in cancer cells? J. Cell. Biochem. 90, 525-533. https://doi.org/10.1002/jcb.10659
  2. Albright, C. D., Liu, R., Bethea, T. C., Da Costa, K. A., Salganik, R. I. and Zeisel, S. H. (1996) Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture. FASEB J. 10, 510-516. https://doi.org/10.1096/fasebj.10.4.8647350
  3. Balassiano, K., Lima, S., Jenab, M., Overvad, K., Tjonneland, A., Boutron-Ruault, M. C., Clavel-Chapelon, F., Canzian, F., Kaaks, R., Boeing, H., Meidtner, K., Trichopoulou, A., Laglou, P., Vineis, P., Panico, S., Palli, D., Grioni, S., Tumino, R., Lund, E., Buenode-Mesquita, H. B., Numans, M. E., Peeters, P. H., Ramon Quiros, J., Sanchez, M. J., Navarro, C., Ardanaz, E., Dorronsoro, M., Hallmans, G., Stenling, R., Ehrnstrom, R., Regner, S., Allen, N. E., Travis, R. C., Khaw, K. T., Offerhaus, G. J., Sala, N., Riboli, E., Hainaut, P., Scoazec, J. Y., Sylla, B. S., Gonzalez, C. A. and Herceg, Z. (2011) Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Cancer Lett. 311, 85-95. https://doi.org/10.1016/j.canlet.2011.06.038
  4. Bertagna, F., Bertoli, M., Treglia, G., Manenti, S., Salemme, M. and Giubbini, R. (2014) Incidental $^{11}C$-Choline PET/CT uptake due to Esophageal carcinoma in a patient studied for prostate cancer. Clin. Nucl. Med. 39, e442-e444. https://doi.org/10.1097/RLU.0000000000000334
  5. Eliyahu, G., Kreizman, T. and Degani, H. (2007) Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int. J. Cancer 120, 1721-1730. https://doi.org/10.1002/ijc.22293
  6. Fujita, T., Shimada, A., Okada, N. and Yamamoto, A. (2006) Functional characterization of Na+-independent choline transport in primary cultures of neurons from mouse cerebral cortex. Neurosci. Lett. 393, 216-221. https://doi.org/10.1016/j.neulet.2005.09.069
  7. Garcia, J. R., Ponce, A., Canales, M., Ayuso, J., Moragas, M. and Soler, M. (2014) Detection of second tumors in $^{11}C$-choline PET/CT studies performed due to biochemical recurrence of prostate cancer. Rev. Esp. Med. Nucl. Imagen Mol. 33, 28-31.
  8. Gllies, R. J. and Morse, D. L. (2005) In vivo magnetic resonance spectroscopy in cancer. Annu. Rev. Biomed. Eng. 7, 287-326. https://doi.org/10.1146/annurev.bioeng.7.060804.100411
  9. Glunde, K., Jiang, L., Moestue, S. A. and Gribbestad, I. S. (2011) MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed. 24, 673-690. https://doi.org/10.1002/nbm.1751
  10. Glunde, K., Jacobs, M. A. and Bhujwalla, Z. M. (2006) Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev. Mol. Diagn. 6, 821-829. https://doi.org/10.1586/14737159.6.6.821
  11. Inazu, M. (2014) Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. Biopharm. Drug Dispos. 35, 431-449. https://doi.org/10.1002/bdd.1892
  12. Inazu, M., Takeda, H. and Matsumiya, T. (2005) Molecular and functional characterization of an $Na^+$-independent choline transporter in rat astrocytes. J. Neurochem. 94, 1427-1437. https://doi.org/10.1111/j.1471-4159.2005.03299.x
  13. Inazu, M., Yamada, T., Kubota, N. and Yamanaka, T. (2013) Functional expression of choline transporter-like protein 1 (CTL1) in small cell lung carcinoma cells: a target molecule for lung cancer therapy. Pharmacol. Res. 76, 119-131. https://doi.org/10.1016/j.phrs.2013.07.011
  14. Iwao, B., Yara, M., Hara, N., Kawai, Y., Yamanaka, T., Nishihara, H., Inoue, T. and Inazu, M. (2016) Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells. Neurochem. Int. 93, 40-50. https://doi.org/10.1016/j.neuint.2015.12.011
  15. Kaelin, W. G., Jr. and McKnight, S. L. (2013) Influence of metabolism on epigenetics and disease. Cell 153, 56-69. https://doi.org/10.1016/j.cell.2013.03.004
  16. Kaplan, C. P., Porter, R. K. and Brand, M. D. (1993) The choline transporter is the major site of control of choline oxidation in isolated rat liver mitochondria. FEBS Lett. 321, 24-26. https://doi.org/10.1016/0014-5793(93)80613-Y
  17. Kommareddi, P. K., Nair, T. S., Thang, L. V., Galano, M. N., Babu, E., Ganapathy, V., Kanazawa, T., McHugh, J. B. and Carey, T. E. (2010) Isoforms, expression, glycosylation, and tissue distribution of CTL2/SLC44A2. Protein J. 29, 417-426. https://doi.org/10.1007/s10930-010-9268-y
  18. Kouji, H., Inazu, M., Yamada, T., Tajima, H., Aoki, T. and Matsumiya, T. (2009) Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells. Arch. Biochem. Biophys. 483, 90-98. https://doi.org/10.1016/j.abb.2008.12.008
  19. Liu, D., Hutchinson, O. C., Osman, S., Price, P., Workman, P. and Aboagye, E. O. (2002) Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br. J. Cancer 87, 783-789. https://doi.org/10.1038/sj.bjc.6600558
  20. Michel, V. and Bakovic, M. (2012) The ubiquitous choline transporter SLC44A1. Cent. Nerv. Syst. Agents Med. Chem. 12, 70-81. https://doi.org/10.2174/187152412800792733
  21. Nair, T. S., Kozma, K. E., Hoefling, N. L., Kommareddi, P. K., Ueda, Y., Gong, T. W., Lomax, M. I., Lansford, C. D., Telian, S. A., Satar, B., Arts, H. A., El-Kashlan, H. K., Berryhill, W. E., Raphael, Y. and Carey, T. E. (2004) Identification and characterization of choline transporter-like protein 2, an inner ear glycoprotein of 68 and 72 kDa that is the target of antibody-induced hearing loss. J. Neurosci. 24, 1772-1779. https://doi.org/10.1523/JNEUROSCI.5063-03.2004
  22. Nishiyama, R., Nagashima, F., Iwao, B., Kawai, Y., Inoue, K., Midori, A., Yamanaka, T., Uchino, H. and Inazu, M. (2016) Identification and functional analysis of choline transporter in tongue cancer: A novel molecular target for tongue cancer therapy. J. Pharmacol. Sci. 131, 101-109. https://doi.org/10.1016/j.jphs.2016.04.022
  23. O'Donoghue, N., Sweeney, T., Donagh, R., Clarke, K. J. and Porter, R. K. (2009) Control of choline oxidation in rat kidney mitochondria. Biochim. Biophys. Acta 1787, 1135-1139. https://doi.org/10.1016/j.bbabio.2009.04.014
  24. Ossani, G., Dalghi, M. and Repetto, M. (2007) Oxidative damage lipid peroxidation in the kidney of choline-deficient rats. Front. Biosci. 12, 1174-1183. https://doi.org/10.2741/2135
  25. Porter, R. K., Scott, J. M. and Brand, M. D. (1992) Choline transport into rat liver mitochondria. Characterization and kinetics of a specific transporter. J. Biol. Chem. 267, 14637-14646.
  26. Shimada, Y., Imamura, M., Wagata, T., Yamaguchi, N. and Tobe, T. (1992) Characterization of 21 newly established esophageal cancer cell lines. Cancer 69, 277-284. https://doi.org/10.1002/1097-0142(19920115)69:2<277::AID-CNCR2820690202>3.0.CO;2-C
  27. Tachimori, Y., Ozawa, S., Numasaki, H., Fujishiro, M., Matsubara, H., Oyama, T., Shinoda, M., Toh, Y., Udagawa, H. and Uno, T. (2016) Comprehensive registry of esophageal cancer in Japan, 2009. Esophagus 13, 110-137. https://doi.org/10.1007/s10388-016-0531-y
  28. Taguchi, C., Inazu, M., Saiki, I., Yara, M., Hara, N., Yamanaka, T. and Uchino, H. (2014) Functional analysis of [methyl-$^3H$]choline uptake in glioblastoma cells: influence of anti-cancer and central nervous system drugs. Biochemical. Pharmacol. 88, 303-312. https://doi.org/10.1016/j.bcp.2014.01.033
  29. Tian, M., Zhang, H., Oriuchi, T., Higuchi, T. and Endo, K. (2004) Comparison of $^{11}C$-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur. J. Nucl. Med. Mol. Imaging 31, 1064-1072.
  30. Uchida, Y., Inazu, M., Takeda, H., Yamada, T., Tajima, H. and Matsumiya, T. (2009) Expression and functional characterization of choline transporter in human keratinocytes. J. Pharmacol. Sci. 109, 102-109. https://doi.org/10.1254/jphs.08291FP
  31. Wang, T., Li, J., Chen, F., Zhao, Y., He, X., Wan, D. and Gu, J. (2007) Choline transporters in human lung adenocarcinoma: expression and functional implications. Acta Biochim. Biophys. Sin. (Shanghai) 39, 668-674. https://doi.org/10.1111/j.1745-7270.2007.00323.x
  32. Xu, X. C. (2009) Risk factors and gene expression in esophageal cancer. Methods Mol. Biol. 471, 335-360.
  33. Yabuki, M., Inazu, M., Yamada, T., Tajima, H. and Matsumiya, T. (2009) Molecular and functional characterization of choline transporter in rat renal tubule epithelial NRK-52E cells. Arch. Biochem. Biophys. 485, 88-96. https://doi.org/10.1016/j.abb.2009.02.007
  34. Yamada, T., Inazu, M., Tajima, H. and Matsumiya, T. (2011) Functional expression of choline transporter-like protein 1 (CTL1) in human neuroblastoma cells and its link to acetylcholine synthesis. Neurochem. Int. 58, 354-365. https://doi.org/10.1016/j.neuint.2010.12.011
  35. Yara, M., Iwao, B., Hara, N., Yamanaka, T., Uchino, H. and Inazu, M. (2015) Molecular and functional characterization of choline transporter in the human trophoblastic cell line JEG-3 cells. Placenta 36, 631-637. https://doi.org/10.1016/j.placenta.2015.03.010
  36. Yen, C. L., Mar, M. H. and Zeisel, S. H. (1999) Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. 13, 135-142. https://doi.org/10.1096/fasebj.13.1.135
  37. Zhang, Y. (2013) Epidemiology of esophageal cancer. World J. Gastroenterol. 19, 5598-5606. https://doi.org/10.3748/wjg.v19.i34.5598

피인용 문헌

  1. Choline transport for phospholipid synthesis: An emerging role of choline transporter-like protein 1 pp.1535-3699, 2019, https://doi.org/10.1177/1535370219830997
  2. 18 F-FDG and 11 C-choline uptake in proliferating tumor cells is dependent on the cell cycle in vitro vol.33, pp.4, 2018, https://doi.org/10.1007/s12149-018-01325-6
  3. Functional Expression of Choline Transporters in the Blood-Brain Barrier vol.11, pp.10, 2018, https://doi.org/10.3390/nu11102265
  4. Protein kinase C promotes choline transporter-like protein 1 function via improved cell surface expression in immortalized human hepatic cells vol.21, pp.2, 2018, https://doi.org/10.3892/mmr.2019.10894
  5. Functional Expression of Choline Transporter-Like Protein 1 in LNCaP Prostate Cancer Cells: A Novel Molecular Target vol.28, pp.2, 2018, https://doi.org/10.4062/biomolther.2019.097
  6. Anticancer Activity of Amb4269951, a Choline Transporter-Like Protein 1 Inhibitor, in Human Glioma Cells vol.13, pp.5, 2020, https://doi.org/10.3390/ph13050104
  7. Molecular and Functional Analysis of Choline Transporters and Antitumor Effects of Choline Transporter-Like Protein 1 Inhibitors in Human Pancreatic Cancer Cells vol.21, pp.15, 2018, https://doi.org/10.3390/ijms21155190