과제정보
연구 과제 주관 기관 : Ministry of Science and Technology of the Republic of China
참고문헌
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704.
- Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., Int. J., 65(1), 19-31.
- Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
- Carrera, E. and Brischetto, S. (2009), "A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates", Appl. Mech. Rev., 62(1), 010803. (17 pages) https://doi.org/10.1115/1.3013824
- Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 62(4), 401-415. https://doi.org/10.12989/sem.2017.62.4.401
- Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., Int. J., 25(6), 717-726.
- Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
- Jabbari, M., Shahryari, E., Haghighat, H. and Eslami, M.R. (2014), "An analytical solution for steady state three dimensional thermoelasticity of functionally graded circular plates due to axisymmetric loads", Eur. J. Mech. A-Solids, 47, 124-142. https://doi.org/10.1016/j.euromechsol.2014.02.017
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B-Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Li, X.Y., Li, P.D. and Kang, G.Z. (2012), "Axisymmetric thermoelasticity field in a functionally graded circular plate of transversely isotropic material", Math. Mech. Solids, 18(5), 464-475. https://doi.org/10.1177/1081286512442437
- Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041
- Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic, Boston, USA.
- Nie, G. and Zhong, Z. (2007), "Axisymmetric bending of two-directional functionally graded circular and annular plates", Acta Mech. Solida Sinica, 20(4), 289-295. https://doi.org/10.1007/s10338-007-0734-9
- Pendhari, S.S., Kant, T., Desai, Y. and Subbaiah, C.V. (2012), "Static solutions for functionally graded simply supported plates", Int. J. Mech. Mater. Des., 8(1), 51-69. https://doi.org/10.1007/s10999-011-9175-1
- Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mech. A-Solids, 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4
- Sahraee, S. and Saidi, A.R. (2009), "Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory", Eur. J. Mech. A-Solids, 28(5), 974-984. https://doi.org/10.1016/j.euromechsol.2009.03.009
- Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), "Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory", Compos. Struct., 89(1), 110-119. https://doi.org/10.1016/j.compstruct.2008.07.003
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
- Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", Int. J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829
- Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003
- Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., Int. J., 52(11), 663-686. https://doi.org/10.12989/sem.2014.52.4.663
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Engrg., 198, 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011
- Tornabene, F. and Viola, E. (2009a), "Free vibrations of fourparameter functionally graded parabolic panels and shells of revolution", Eur. J. Mech. A/Solids, 28, 991-1013. https://doi.org/10.1016/j.euromechsol.2009.04.005
- Tornabene, F. and Viola, E. (2009b), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44, 255-281. https://doi.org/10.1007/s11012-008-9167-x
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017a), "Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: Convergence and accuracy", Eng. Ana. Bound. Elem. DOI: doi.org/10.1016/j.engana-bound.2017
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017b), "A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on weak formulation isogeometric analysis", Compos. Struct., 171, 429-461. https://doi.org/10.1016/j.compstruct.2017.03.055
- Wang, Y., Xu, R.Q. and Ding, H.J. (2009), "Free axisymmetric vibration of FGM circular plates", Appl. Math. Mech., 30(9), 1077-1082. https://doi.org/10.1007/s10483-009-0901-x
- Wang, Y., Xu, R.Q. and Ding, H.J. (2010), "Three-dimensional solution of axisymmetric bending of functionally graded circular plates", Compos. Struct., 92(7), 1683-1693. https://doi.org/10.1016/j.compstruct.2009.12.002
- Wu, C.P. and Li, H.Y. (2013a), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34(1), 27-62.
- Wu, C.P. and Li, H.Y. (2013b), "RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions", Compos. Struct., 100, 592-608. https://doi.org/10.1016/j.compstruct.2013.01.019
- Wu, C.P. and Liu, Y.C. (2016a), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031
- Wu, C.P. and Liu, Y.C. (2016b), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161
- Xu, R.Q., Wang, Y. and Chen, W.Q. (2005), "Axisymmetric buckling of transversely isotropic circular and annular plates", Arch. Appl. Mech., 74(10), 692-703. https://doi.org/10.1007/s00419-005-0379-4
피인용 문헌
- A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2018, https://doi.org/10.12989/scs.2019.31.5.503
- Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141