References
- ASTM E 119-00 (2000), Standard Test Methods for Fire Test of Building Construction and Materials, American National Standards Institute, Committee E05.
- Bazant, Z.P. and Kaplan, M.F. (1996), "Concrete at high temperatures, Material properties and mathematical models", Longman House, Burnt Mill, England.
- Burlion, N., Skoczylas, F. and Dubois, T. (2003), "Induced anisotropic permeability due to drying of concrete", Cement Concrete Res., 33(5), 679-687. https://doi.org/10.1016/S0008-8846(02)01039-6
- Castillo, C. and Durrani, A.J. (1990), "Effect of transient high temperature on high strength concrete", ACI Struct. J., 87(1), 47-53.
- Dias, W.P.S., Khoury, G.A. and Sullivan, P.J.E. (1990), "Mechanical properties of hardened cement paste exposed to temperatures up to 700 C (1292 F)", Mater. J., 87(2), 160-166.
- Dwaikat, M.B. and Kodur, V.K.R. (2010), "Fire induced spalling in high strength concrete beams", Fire Technol., 46(1), 251. https://doi.org/10.1007/s10694-009-0088-6
- Federico, L. (2013), "Waste glass-a supplementary cementitious material", Doctoral Dissertation, McMaster University, Hamilton, ON, Canada.
- Hager, I. (2013), "Behaviour of cement concrete at high temperature", Bull. Pol. Acad. Sci., Tech. Sci., 61(1), 145-154.
- Khoury, G.A. (2000), "Effect of fire on concrete and concrete structures", Prog. Struct. Eng. Mater., 2(4), 429-447. https://doi.org/10.1002/pse.51
- Kodur, V. (2014), "Properties of concrete at elevated temperatures", ISRN Civil Eng., 2014, Article ID 468510, 15.
- Kulkarni, D.K. (2014), "Retrofitting of fire affected structural member in multistorey buildings", Int. J. Sci. Technoledge, 2(6), 230.
- Ling, T.C., Poon, C.S. and Kou, S.C. (2012), "Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures", Cement Concrete Compos., 34(2), 265-272. https://doi.org/10.1016/j.cemconcomp.2011.08.010
- Liu, S., Xie, G. and Wang, S. (2015), "Effect of curing temperature on hydration properties of waste glass powder in cement-based materials", J. Therm. Anal. Calorimet., 119(1), 47-55. https://doi.org/10.1007/s10973-014-4095-6
- Malhotra, V.M. and Mehta, P.K. (1996), Advances in Concrete Technology, Vol. 1, Pozzolanic and Cementitious Materials, 1st Edition, Gordon and Breach Science Publishers, New York.
- NF, EN 12350-2 (2009), Essai Pour Beton Frais-Partie 2: Essais d'affaissement.
- NF, EN 12390-5 (2009), Essai Pour Beton Durci - Partie 5: Resistance a la flexion sur eprouvettes.
- NF, EN 933-1 (2006), Essais Pour Determiner les Caracteristiques Geometriques des Granulats-Partie 1: Determination de la Granularite-Analyse Granulometrique Par Tamisage.
- Noumowe, A. and Galle, C. (2001), "Study of high strength concrete at raised temperature up to 200C: thermal gradient and mechanical behavior", Proceedings of the 16th Structural Mechanics in Reactor Technology, Washington, DC, USA.
- Olofinnade, O.M., Ede, A.N. and Ndambuki, J.M. (2017), "Experimental investigation on the effect of elevated temperature on compressive strength of concrete containing waste glass powder", Int. J. Eng. Technol. Innov., 7(4), 280-291.
- Persy, J.P. and Deloye, F.X. (1986), "Investigations sur un ouvrage en beton incendie", Bulletin des Laboratoires des Ponts et Chaussees, 145, 108-114.
- Platret, G. (2002), "Suivi de l'hydratation du ciment et de l'evolution des phases solides dans les betons par analyse thermique, caracteristiques microstructurales et proprietes relatives a la durabilite des betons", Methodes de Mesure et d'essai de Laboratoire, Methode d'essai, 58.
- Raju, S. and Kumar, P.R. (2014), "Effect of using glass powder in concrete", Int. J. Innov. Res. Sci. Eng. Technol., 31, 421-427.
- Rao, S., Rahul, K. and Pradesh, A. (2013), "Studies on bacterial concrete exposed to elevated temperatures and thermal cycles", Studies, 3(1), 126-135.
- Sabeur, H. and Colina, H. (2015), "Effect of heating-cooling cycles on transient creep strain of high performance, high strength and ordinary concrete under service and accidental conditions", Mater. Struct., 48(5), 1561-1579. https://doi.org/10.1617/s11527-014-0254-2
- Saeed, S.A., Qadir, L.S.S. and Jassim, H.M. (2016), "Strength and behavior of self-compacting concrete with glass waste as partial replacement for coarse aggregate under elevated temperatures", Int. J. Eng. Technol. Manage. Appl. Sci., 4(3), 24-33.
- Sangluaia, C., Haridharan, M.K., Natarajan, C. and Rajaraman, A. (2013), "Behaviour of reinforced concrete slab subjected to fire", Int. J. Comput. Eng. Res., 3(1), 195-206.
- Sha, W., O'Neill, E.A. and Guo, Z. (1999), "Differential scanning calorimetry study of ordinary Portland cement", Cement Concrete Res., 29(9), 1487-1489. https://doi.org/10.1016/S0008-8846(99)00128-3
- Shayan, A. and Xu, A. (2004), "Value-added utilisation of waste glass in concrete", Cement Concrete Res., 34(1), 81-89. https://doi.org/10.1016/S0008-8846(03)00251-5
- Singh, G., Singh, A.K., Bhaskar, A. and Attree, A.S. (2014), "A critical study of effectiveness of waste glass powder in concrete", Int. Arch. Appl. Sci. Technol., 5(3), 31-35.
- Soroushian, P. (2012), "Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement", Constr. Build. Mater., 29, 368-377. https://doi.org/10.1016/j.conbuildmat.2011.10.061
- Tebbal, N., Rahmouni, Z. and Maza, M. (2017), "Combined effect of silica fume and additive on the behavior of high performance concretes subjected to high temperatures", Min. Sci., 24, 129-145.
- Tufail, M., Shahzada, K., Gencturk, B. and Wei, J. (2017), "Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete", Int. J. Concrete Struct. Mater., 11(1), 17-28. https://doi.org/10.1007/s40069-016-0175-2
Cited by
- Waste glass powder and its effect on the fresh and mechanical properties of concrete: A state of the art review vol.10, pp.5, 2018, https://doi.org/10.12989/acc.2020.10.5.417
- Effect of glass powder on the behaviour of high performance concrete at elevated temperatures vol.10, pp.5, 2018, https://doi.org/10.12989/acc.2020.10.5.443
- Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures vol.11, pp.1, 2018, https://doi.org/10.12989/acc.2021.11.1.011
- Mechanical and durability properties of concrete incorporating glass and plastic waste vol.11, pp.2, 2018, https://doi.org/10.12989/acc.2021.11.2.173