References
- Al-Khanbashi, M., Caramuta, S., Alajmi, A.M., Al-Haddabi, I., Al-Riyami, M., Lui, W.O., and Al-Moundhri, M.S. (2016). Tissue and serum miRNA profile in locally advanced breast cancer (LABC). in response to neo-adjuvant chemotherapy (NAC). Treatment. PLoS One 11, e0152032. https://doi.org/10.1371/journal.pone.0152032
- Catalano, V., Turdo, A., Di Franco, S., Dieli, F., Todaro, M., and Stassi, G. (2013). Tumor and its microenvironment: a synergistic interplay. Semi. Cancer Biol. 23, 522-532. https://doi.org/10.1016/j.semcancer.2013.08.007
- Coronnello, C., and Benos, P.V. (2013). ComiR: Combinatorial microRNA target prediction tool. Nucleic Acids Res. 41, W159-164. https://doi.org/10.1093/nar/gkt379
- Ding, L., Congwei, L., Bei, Q., Tao, Y., Ruiguo, W., Heze, Y., Bo, D., and Zhihong, L. (2016). mTOR: An attractive therapeutic target for osteosarcoma? Oncotarget 7, 50805-50813.
- Fogh, J., Wright, W.C., and Loveless, J.D. (1977). Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst. 58, 209-214. https://doi.org/10.1093/jnci/58.2.209
- Garcia, D.M., Baek, D., Shin, C., Bell, G.W., Grimson, A., and Bartel, D.P. (2011). Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 18, 1139-1146. https://doi.org/10.1038/nsmb.2115
- Han, K., Chen, X., Bian, N., Ma, B., Yang, T., Cai, C., Fan, Q., Zhou, Y., and Zhao, T.B. (2015). MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget 6, 8875-8889.
- Huo, X., Li, S., Shi, T., Suo, A., Ruan, Z., Guo, H. and Yao, Y. (2015). Cullin3 promotes breast cancer cells metastasis and epithelial-mesenchymal transition by targeting BRMS1 for degradation. Oncotarget 6, 41959-41975.
- Hurst, D.R., Xie, Y., Vaidya, K.S., Mehta, A., Moore, B.P., Accavitti-Loper, M.A., Samant, R.S., Saxena, R., Silveira, A.C., and Welch, D.R. (2008). Alterations of BRMS1-ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. J. Biol. Chem. 283, 7438-7444. https://doi.org/10.1074/jbc.M709446200
- Meehan, W.J., Samant, R.S., Hopper, J.E., Carrozza, M.J., Shevde, L.A., Workman, J.L., Eckert, K.A., Verderame, M.F., and Welch, D.R. (2004). Breast cancer metastasis suppressor 1 (BRMS1). forms complexes with retinoblastoma-binding protein 1 (RBP1). and the mSin3 histone deacetylase complex and represses transcription. J. Biol. Chem. 279, 1562-1569. https://doi.org/10.1074/jbc.M307969200
- Nagji, A.S., Liu, Y., Stelow, E.B., Stukenborg, G.J., and Jones, D.R. (2010). BRMS1 transcriptional repression correlates with CpG island methylation and advanced pathological stage in non-small cell lung cancer. J. Pathol. 221, 229-237. https://doi.org/10.1002/path.2707
- Ponten, J., and Saksela, E. (1967). Two established in vitro cell lines from human mesenchymal tumours. Int. J. Cancer 2, 434-447. https://doi.org/10.1002/ijc.2910020505
- Ren, L., Mendoza, A., Zhu, J., Briggs, J.W., Halsey, C., Hong, E.S., Burkett, S.S., Morrow, J., Lizardo, M.M., Osborne, T., et al. (2015). Characterization of the metastatic phenotype of a panel of established osteosarcoma cells. Oncotarget 6, 29469-29481.
- Roesley, S.N., Suryadinata, R., Morrish, E., Tan, A.R., Issa, S.M., Oakhill, J.S., Bernard, O., Welch, D.R., and Sarcevic, B. (2016). Cyclindependent kinase-mediated phosphorylation of breast cancer metastasis suppressor 1 (BRMS1). affects cell migration. Cell Cycle 15, 137-151. https://doi.org/10.1080/15384101.2015.1121328
- Samant, R.S., Clark, D.W., Fillmore, R.A., Cicek, M., Metge, B.J., Chandramouli, K.H., Chambers, A.F., Casey, G., Welch, D.R., and Shevde, L.A. (2007). Breast cancer metastasis suppressor 1 (BRMS1). inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol. Cancer 6, 6.
- Seraj, M.J., Harding, M.A., Gildea, J.J., Welch, D.R., and Theodorescu, D. (2000a). The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin. Exp. Metastasis 18, 519-525. https://doi.org/10.1023/A:1011819621859
- Seraj, M.J., Samant, R.S., Verderame, M.F., and Welch, D.R. (2000b). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res. 60, 2764-2769.
- Smith, P.W., Liu, Y., Siefert, S.A., Moskaluk, C.A., Petroni, G.R., and Jones, D.R. (2009). Breast cancer metastasis suppressor 1 (BRMS1). suppresses metastasis and correlates with improved patient survival in non-small cell lung cancer. Cancer Lett. 276, 196-203. https://doi.org/10.1016/j.canlet.2008.11.024
- Wang, W., Zhou, X., and Wei, M. (2015). MicroRNA-144 suppresses osteosarcoma growth and metastasis by targeting ROCK1 and ROCK2. Oncotarget 6, 10297-10308.
- Wang, Z., Wang, C., Zhou, Z., Sun, M., Zhou, C., Chen, J., Yin, F., Wang, H., Lin, B., Zuo, D., et al. (2016). CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis. Oncotarget 7, 60623-60638.
- Yan, H.L., Li, L., Li, S.J., Zhang, H.S., and Xu, W. (2016). miR-346 promotes migration and invasion of nasopharyngeal carcinoma cells via targeting BRMS1. J. Biochem. Mol. Toxicol. 30, 602-607. https://doi.org/10.1002/jbt.21827
Cited by
- Knockdown of SRPX2 inhibits the proliferation, migration, and invasion of prostate cancer cells through the PI3K/Akt/mTOR signaling pathway vol.33, pp.1, 2018, https://doi.org/10.1002/jbt.22237
- miRNA signatures in childhood sarcomas and their clinical implications vol.21, pp.12, 2018, https://doi.org/10.1007/s12094-019-02104-z
- The Search of miRNA Related to Invasive Growth of Nonfunctioning Gonadotropic Pituitary Tumors vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/3730657
- BRMS1: a multifunctional signaling molecule in metastasis vol.39, pp.3, 2018, https://doi.org/10.1007/s10555-020-09871-0
- Regulation of breast cancer metastasis signaling by miRNAs vol.39, pp.3, 2018, https://doi.org/10.1007/s10555-020-09905-7
- N6-Methyladenosine modification of the TRIM7 positively regulates tumorigenesis and chemoresistance in osteosarcoma through ubiquitination of BRMS1 vol.59, pp.None, 2018, https://doi.org/10.1016/j.ebiom.2020.102955
- Identifying the Potential Differentially Expressed miRNAs and mRNAs in Osteonecrosis of the Femoral Head Based on Integrated Analysis vol.16, pp.None, 2018, https://doi.org/10.2147/cia.s289479