참고문헌
- 국토교통부, 통계로 보는 한국의 수자원, 국토교통부 수자원정책국, 2016.
- 곽승준.이충기, "서울시 생활용수 수요 추정-오차수정모형을 적용하여-", 자원.환경경제연구, 제11권 제1호, 2002, pp. 81-98.
- 김종원.한동근, "계량경제모형을 통한 물 수요분석의 유용성과 한계", 국토계획, 제37권 제4호, 2002, pp. 201-216.
- 노상환, "상수도 사용량 결정요인 분석 - 기초지자체의 요인분석을 중심으로 -", 환경정책, 제15권 제1호, 2007, pp. 5-21.
- 박두호.최한주, "패널자료를 이용한 생활용수 수요의 가격탄력도 분석", 상하수도학회지, 제20권 제4호, 2006, pp. 527-534.
- 유승훈.정군오.양창영, "가구 서베이 자료를 이용한 서울시 생활용수의 수요 분석", 서울도시연구, 제6권 제1호, 2005, pp. 1-16.
- 유승훈.양창영, "무응답 자료를 고려한 대도시 상수도 사용량의 결정요인 분석", 경제연구, 제23권 제1호, 2005, pp. 223-246.
- Arbues, F., M. Garcia-Valinas, and R. Martinez-Espineira, "Estimation of Residential Water Demand: A State-Of-The-Art Review", Journal of Socio-Economics, Vol. 32, Issue 1, 2003, pp. 81-102. https://doi.org/10.1016/S1053-5357(03)00005-2
- Espey, M., J. Espey, and W. D. Shaw, "Price Elasticity of Residential Demand for Water: A Meta-Analysis", Water Resources Research, Vol. 33, No. 6, 1997, pp. 1369-1374. https://doi.org/10.1029/97WR00571
- Espey, M., "Gasoline Demand Revisited: an International Meta-Analysis Elasticities", Energy Economics, Vol. 20, Issue 3, 1998, pp. 273-295. https://doi.org/10.1016/S0140-9883(97)00013-3
- Galvao Jr., A., "Quantile Regression for Dynamic Panel Data with Fixed Effects", Journal of Econometrics, Vol. 164, Issue 1, 2011, pp. 142-157. https://doi.org/10.1016/j.jeconom.2011.02.016
- Grafton, R. Q., M. B. Ward, H. To, and T. Kompas, "Determinants of Residential Water Consumption: Evidence and Analysis from a 10-Country Household Survey", Water Resources Research, Vol. 47, Issue 8, 2011, W08537. https://doi.org/10.1029/2010WR009685
- House-Peters, L. A. and H. Chang, "Urban Water Demand Modeling: Review of Concepts, Methods, and Organizing Principles", Water Resources Research, Vol. 47, Issue 5, 2011, W05401. https://doi.org/10.1029/2010WR009624
- Hung, M. F. and B. T. Chie, "Residential Water Use: Efficiency, Affordability, and Price Elasticity", Water Resources Research, Vol. 27, Issue 1, 2013, pp. 275-291.
- Koenker and Basset, "Regression Quantiles", Econometrica, Vol. 46, No. 1, 1978, pp. 33-55. https://doi.org/10.2307/1913643
- Koenker, "Quantile Regression for Longitudinal Data", Journal of Multivariate Analysis, Vol. 91, Issue 1, 2004, pp. 74-89. https://doi.org/10.1016/j.jmva.2004.05.006
- Lamarche, C., "Robust Penalized Quantile Regression Estimation for Panel Data", Journal of Econometrics, Vol. 157, Issue 2, 2010, pp. 396-408. https://doi.org/10.1016/j.jeconom.2010.03.042
- Martinez-Espineira, R., "An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques", Journal of Applied Economics, Vol. 10, No. 1, 2007, pp. 161-184.
- Marzano, R., C. Rouge, P. Garrone, L. Grilli, J. J. Harou, and M. Pulido-Velazquez, "Determinants of the Price Response to Residential Water Tariffs: Meta-Analysis and Beyond", Environmental Modelling & Software, Vol. 101, Issue 3, 2018, pp. 236-248. https://doi.org/10.1016/j.envsoft.2017.12.017
- Nauges, C., and A. Thomas, "Privately Operated Water Utilities, Municipal Price Negotiation, and Estimation of Residential Water Demand: The Case of France", Land Economics, Vol. 76, No. 1, 2000, pp. 68-85. https://doi.org/10.2307/3147258
- Powell, D., "Quantile Regression with Nonadditive Fixed Effects", Working Paper, Available at: http://works.bepress.com/david_powell/1/, 2016.
- Pint, E. M., "Household Responses to Increased Water Rates during the California Drought", Land Economics, Vol. 75, No. 2, 1999, pp. 246-266. https://doi.org/10.2307/3147009
- Rosen, A. M., "Set Identification via Quantile Restriction in Short Panels", Journal of Econometrics, Vol. 166, Issue 1, 2012, pp. 127-137. https://doi.org/10.1016/j.jeconom.2011.06.011
- Sebri, M., "A Meta-Analysis of Residential Water Demand Studies", Environment, Development and Sustainability, Vol. 16., Issue 3, 2014, pp. 499-520. https://doi.org/10.1007/s10668-013-9490-9
- Schleich, J., and T. Hillenbrand, "Determinants of Residential Demand in Germany", Ecological Economics, Vol. 68, Issue 6, 2009, pp. 1756-1769. https://doi.org/10.1016/j.ecolecon.2008.11.012