DOI QR코드

DOI QR Code

미세성형 기술과 패치의 선택적 제거방법을 이용한 이방성의 육각별 입자 제조

Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch

  • 심규락 (충남대학교 공과대학 응용화학공학과) ;
  • 염수진 (충남대학교 공과대학 응용화학공학과) ;
  • 정성근 (충남대학교 공과대학 응용화학공학과) ;
  • 강경구 (충남대학교 공과대학 응용화학공학과) ;
  • 이창수 (충남대학교 공과대학 응용화학공학과)
  • Shim, Gyurak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Yeom, Su-Jin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jeong, Seong-Geun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Kyoung-Ku (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2017.12.05
  • 심사 : 2017.12.27
  • 발행 : 2018.06.30

초록

본 연구는 입자 내에서 패치의 위치를 정교하게 제어할 수 있는 새로운 친환경 공정기술에 관한 것이다. 물리화학적으로 안정한 소재를 활용한 미세성형 기술과 패치의 위치를 제어할 수 있는 선택적 제거방법을 결합하여 수행하였다. 미세성형 기술에는 이방성 구조의 패치입자의 형상을 안정적으로 구현하기 위하여, perfluoropolyether (PFPE) 마이크로몰드를 사용하였다. 이를 통하여, 소수성의 패치소재가 poly(dimethylsiloxane) (PDMS) 마이크로몰드 내로 확산되는 문제를 극복할 수 있었다. 그리고, 이는 패치의 우수한 형상 안정성과 소수성 패치소재를 이용한 패치입자 제조를 가능하게 하였다. 마지막으로 패치의 위치가 서로 다른 12종의 패치입자를 제조하여 향상된 공정 안정성을 확인하였다. 본 연구에서 제시한 미세성형 기술과 패치의 선택적 제거방법은 패치의 위치가 선택적으로 제어된 이방성의 입자를 적은 공정의 수를 거쳐 빠르게 제조할 수 있는 장점을 가진다. 또한 제조된 패치입자는 방향성이 유도된 자기조립 분야, 조절이 가능한 약물 전달 시스템 등의 다양한 연구에 널리 활용될 수 있으리라 기대한다.

This study presents a novel and eco-friendly process that can precisely control the location of the patches on the patch particles. The method of manufacturing these anisotropic hexagram patch particles consists of sequential combinations of two separate methods such as a sequential micromolding technique for fabricating patch particles and a selective localization method for controlling the location of patches on the patch particles. The micromolding technique was carried out using physicochemically stable material as a micromold. In order to fabricate the highly stable patch anisotropic hexagram particles, the perfluoropolyether (PFPE) micromold was used to the process of the micromolding technique because they could prevent the problem of diffusion of hydrophobic monomers while conventional poly(dimethylsiloxane) (PDMS) micromold is limited to prevent the problem of diffusion of hydrophobic monomers. Based on combination methods of the micromolding technique and the selective localization method, the reproducibility and stability have been improved to fabricate 12 different types of anisotropic hexagram patch particles. This fabrication method shows the unique advantages in eco-friend condition, easy and fast fabrication due to less number of process, the feasibility of a mass production. We believe that these anisotropic hexagram patch particles can be widely utilized to the field of the directional self-assembly.

키워드

참고문헌

  1. Langer, R., and Tirrell, D. A., "Designing Materials for Biology and Medicine," Nature, 428, 487-492 (2004). https://doi.org/10.1038/nature02388
  2. Radhakrishnan, K., and Raichur, A. M., "Biologically Rriggered Exploding Protein Based Microcapsules for Drug Delivery," Chem. Commun., 48, 2307-2309 (2012). https://doi.org/10.1039/c2cc17344a
  3. Champion, J. A., Katare, Y. K., and Mitragotri, S., "Particle Shape: A New Design Parameter for Micro- and Nanoscale Drug Delivery Carriers," J. Control. Release, 121, 3-9 (2007). https://doi.org/10.1016/j.jconrel.2007.03.022
  4. Tao, S. L., and Desai, T. A., "Microfabrication of Multilayer, Asymmetric, Polymeric Devices for Drug Delivery," Adv. Mater., 17, 1625-1630 (2005). https://doi.org/10.1002/adma.200500017
  5. Andrianov, A. K., and Payne, L. G., "Polymeric Carriers for Oral Uptake of Microparticulates," Adv. Drug Deliv. Rev., 34, 155-170 (1998). https://doi.org/10.1016/S0169-409X(98)00038-6
  6. Fenandez-Rosas, E., Gomez, R., Ibanez, E., Barrios, L., Duch, M., Esteve, J., Plaza, J. A., and Nogues, C., "Internalization and Cytotoxicity Analysis of Silicon-Based Microparticles in Macrophages and Embryos," Biomed. Microdevices, 12, 371-379 (2010). https://doi.org/10.1007/s10544-009-9393-6
  7. Serda, R. E., Chiappini, C., Fine, D., Tasciotti, E., and Ferrari, M., "Porous Silicon Particles for Imaging and Therapy of Cancer," Life Sci., 2, 357-406 (2010).
  8. Champion, J. A., and Mitragotri, S., "Role of Target Geometry in Phagocytosis," PNAS, 103(13), 4930-4934 (2006). https://doi.org/10.1073/pnas.0600997103
  9. Bollhorst, T., Rezwan, K., and Maas, M., "Colloidal Capsules: Nano- and Microcapsules with Colloidal Particle Shells," Chem. Soc. Rev., 46, 2091-2126 (2017). https://doi.org/10.1039/C6CS00632A
  10. Brugarolas, T., Tu, F., and Lee, D., "Directed Assembly of Particles Using Microfluidic Droplets and Bubbles," Soft Matter, 9, 9046-9058 (2013). https://doi.org/10.1039/c3sm50888a
  11. Nandiyanto, A. B., Suhendi, A., Arutanti, O., Ogi, T., and Okuyama, K., "Influences of Surface Charge, Size, and Concentration of Colloidal Nanoparticles on Fabrication of Self-Organized Porous Silica in Film and Particle Forms," Langmuir, 29, 6262-6270 (2013). https://doi.org/10.1021/la401094u
  12. Guo, J., Tardy, B. L., Christofferson, A. J., Dai, Y., Richardson, J. J., Zhu, W., Hu, M., Ju, Y., Cui, J., Dagastine, R. R., Yarovsky, I., and Caruso, F., "Modular Assembly of Superstructures from Polyphenol-Functionalized Building Blocks," Nat. Nanotechnol., 11, 1105-1112 (2016). https://doi.org/10.1038/nnano.2016.172
  13. Cordeiro, J., Zelsmann, M., Honegger, T., Picard, E., Hadji, E., and Peyrade, D., "Table-Top Deterministic and Collective Colloidal Assembly Using Videoprojector Lithography," Appl. Surf. Sci., 349, 452-458 (2015). https://doi.org/10.1016/j.apsusc.2015.04.223
  14. Loudet, J. C., Alsayed, A. M., Zhang, J., and Yodh, A. G., "Capillary Interactions Between Anisotropic Colloidal Particles," Phys. Rev. Lett., 94, 018301-1-4 (2005). https://doi.org/10.1103/PhysRevLett.94.018301
  15. Ross, L., Sacanna, S., Irvine, W. T., Chaikin, P. M., Pine, D. J., and Philips, A. P., "Cubic Crystals from Cubic Colloids," Soft Matter, 7, 4139-4142 (2011). https://doi.org/10.1039/C0SM01246G
  16. Manoharan, V. N., Elsesser, M. T., and Pine, D. J., "Dense Packing and Symmetry in Small Clusters of Microspheres," Science, 301, 483-487 (2003). https://doi.org/10.1126/science.1086189
  17. Wang, S., Kudo, T., Yuyama, K., Sugiyama, T., and Masuhara, H., "Optically Evolved Assembly Formation in Laser Trapping of Polystyrene Nanoparticles at Solution Surface," Langmuir, 32(47), 12488-12496 (2016). https://doi.org/10.1021/acs.langmuir.6b02433
  18. Kang, S. M., Choi, C. H., Kim, J., Yeom, S. J., Lee, D., Park, B. J., and Lee, C. S., "Capillarity-Induced Directed Self- Assembly of Patchy Hexagram Particles at the Air-Water Interface," Soft Matter, 12, 5847-5853 (2016). https://doi.org/10.1039/C6SM00270F
  19. Kim, J., Choi, C. H., Yeom, S. J., Eom, N., Kang, K. K., and Lee, C. S., "Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity," Langmuir, 33, 7503-7511 (2017). https://doi.org/10.1021/acs.langmuir.7b01252
  20. Lee, H. Y., Shin, S. H. R, Drews, A. M., Chirsan, A. M., Lewis, S. A., and Bishop, K. M., "Self-Assembly of Nanoparticle Amphiphiles with Adaptive Surface Chemistry," ACS Nano, 8(10), 9979-9987 (2014). https://doi.org/10.1021/nn504734v
  21. Wang, Y., Hollingsworth, A. D., Yang, S., Patel, S., Pine, D. J., and Weck, M., "Patchy Particle Self-Assembly via Metal Coordination," J. Am. Chem. Soc., 135, 14064-14067 (2013). https://doi.org/10.1021/ja4075979
  22. Choi, C. H., Kang, S. M., Jin, S. H., Yi, H., and Lee, C. S., "Controlled Fabrication of Multicompartmental Polymeric Microparticles by Sequential Micromolding via Surface-Tension-Induced Droplet Formation," Langmuir, 31, 1328-1335 (2015). https://doi.org/10.1021/la504404y
  23. Wang, Y., Wang, Y., Breed, D. R., Manoharan, V. N., Feng, L., Hollingsworth, A. D., Weck, M., and Pine, D. J., "Colloids with Valence and Specific Directional Bonding," Nature, 491, 51-56 (2012). https://doi.org/10.1038/nature11564
  24. Cho, Y. S., Yi, G. R., Kim, S. H., Jeon, S. J., Elsesser, M. T., Yu, H., Yang, S., and Pine, D. J., "Particles with Coordinated Patches or Windows from Oil-in-Water Emulsions," Chem. Matter., 19, 3183-3193 (2007). https://doi.org/10.1021/cm070051w
  25. Zheng, X., Liu, M., He, M., Pine, D. J., and Weck, M., "Shape-Shifting Patchy Particles," Angew. Chem.-Int. Edit., 129, 5599-5603 (2017). https://doi.org/10.1002/ange.201701456
  26. Choi, C. H., Weitz, D. A., and Lee, C. S., "One Step Formation of Controllable Complex Emulsions: From Functional Particles to Simultaneous Encapsulation of Hydrophilic and Hydrophobic Agents into Desired Position," Adv. Mater., 25(18), 2536-2541 (2013). https://doi.org/10.1002/adma.201204657
  27. Cao, X., Li, W., Ma, T., and Dong, H., "One-Step Fabrication of Polymeric Hybrid Particles with Core-Shell, Patchy, Patchy Janus and Janus Architectures via a Microfluidic-Assisted Phase Separation Process," RSC Adv., 5, 79969-79975 (2015). https://doi.org/10.1039/C5RA16504K
  28. Choi, C. H., Lee, J., Yoon, K., Tripathi, A., Stone, H. A., Weitz, D. A., and Lee, C. S., "Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem.-Int. Edt., 49, 7748-7752 (2010). https://doi.org/10.1002/anie.201002764
  29. Love, J. C., Wolfe, D. B., Jacobs, H. O., and Whitesides, G. M., "Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography," Langmuir, 17, 6005-6012 (2001). https://doi.org/10.1021/la010655t
  30. Williams, S. S., Retterer, S., Lopez, R., Ruiz, R., Samulski, E. T., and De Simone, J. M., "High-Resolution PFPE-Based Molding Techniques for Nanofabrication of High-Pattern Density, Sub-20 nm Features: A Fundamental Materials Approach," Nano Lett., 10, 1421-1428 (2010). https://doi.org/10.1021/nl100326q
  31. Bong, K. W., Lee, J., and Doyle, P. S., "Stop Flow Lithography in Perfluoropolyether (PFPE) Microfluidic Channels," Lab Chip, 14, 4680-4687 (2014). https://doi.org/10.1039/C4LC00877D
  32. Xia, Y., Kim, E., Zhao, X., Rogers, A. J., Prentiss, M., and Whitesides, M. G., "Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Maters," Science, 273, 347-349 (1996). https://doi.org/10.1126/science.273.5273.347
  33. Hwang, S., Choi, C. H., and Lee C. S., "Regioselective Surface Modification of PDMS Microfluidic Device for the Generation of Monodisperse Double Emulsions," Macromol. Res., 20(4), 422-428 (2012). https://doi.org/10.1007/s13233-012-0048-8
  34. Lee, J. N., Park, C., and Whitesides, G. M., "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Anal. Chem., 75, 655-6554 (2003). https://doi.org/10.1021/ac026035u
  35. Fowler, S. D., and Greenspan, P., "Application of Nile Red, a Fluorescent Hydrophobic Probe, for the Detection of Neutral Lipid Deposits in Tissue Sections: Comparison with Oil Red O," J. Histochem. Cytochem., 33(8), 833-836 (1985). https://doi.org/10.1177/33.8.4020099
  36. Greenspan, P., Mayer, E. P., and Fowler, S. D., "Nile Red: A Selective Fluorescent Stain for Intracellular Lipid Droplets," J. Cell Biol., 100, 965-973 (1985). https://doi.org/10.1083/jcb.100.3.965