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Abstract 
 

Social Network Aggregators are used to maintain and manage manifold accounts over 
multiple online social networks. Displaying the Activity feed for each social network on a 
common dashboard has been the status quo of social aggregators for long, however retrieving 
the desired data from various social networks is a major concern. A user inputs the query 
desiring the specific outcome from the social networks. Since the intention of the query is 
solely known by user, therefore the output of the query may not be as per user’s expectation 
unless the system considers ‘user-centric’ factors. Moreover, the quality of solution depends 
on these user-centric factors, the user inclination and the nature of the network as well. Thus, 
there is a need for a system that understands the user’s intent serving structured objects. 
Further, choosing the best execution and optimal ranking functions is also a high priority 
concern.  The current work finds motivation from the above requirements and thus proposes 
the design of a query processing system to retrieve information from social network that 
extracts user’s intent from various social networks. For further improvements in the research 
the machine learning techniques are incorporated such as Latent Dirichlet Algorithm (LDA) 
and Ranking Algorithm to improve the query results and fetch the information using data 
mining techniques.The proposed framework uniquely contributes a user-centric query 
retrieval model based on natural language and it is worth mentioning that the proposed 
framework is efficient when compared on temporal metrics. The proposed Query Processing 
System to Retrieve Information from Social Network (QPSSN) will increase the 
discoverability of the user, helps the businesses to collaboratively execute promotions, 
determine new networks and people. It is an innovative approach to investigate the new 
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aspects of social network. The proposed model offers a significant breakthrough scoring up to  
precision and recall respectively. 
 
 
Keywords: Query Processing, Social Network, LDA, Natural Language Processing 
 

1. Introduction 

Query processing in Social Network Aggregators (SNA) [1] extracts user information from 
multiple social networks in a reliable way. Conventionally, the respective query engines of the 
social network respond to the user’s request by using conventional information retrieval 
methods [1] which in turn return a huge lot comprising of both relevant and irrelevant 
information. The proposed method offers an edge over other mechanisms as it not only 
retrieves more user-centric results as compared to traditional way of keyword-based searching 
but also in timely manner as well. The system exploits natural language techniques for query 
processing and extracting information from the social web. Although natural language 
techniques are finding space in semantic search engines, however; the same has not been 
applied to respond to queries executed on social networks. Thus the motivation for the 
proposed model is to find a viable solution that can provide an intelligent and integrated result 
of user’s free form query. 
    The study of the literature reveals various works and application of information systems in 
social networks. Matsuo et. al. [2] have developed a system “POLYPHONET” to extract the 
information from the social network that detects relationships of person, groups of person and 
obtain keywords for a person. In the environment of semantic web, social networks and 
semantics are the dualistic sides of the coin as pointed by Mika [3]. There exist several ways 
such as relation extraction, event detection etc. to extract the information from the social 
network [4][5][6]. Tyler et al. [4] has explored the detection of relations on the basis of 
information. Kautz [6] developed a Referral Web by extricating the measurement of the 
co-event of the names on the web.  
   In the past, the enhanced development of online social Networks (OSNs) derives the 
dispersion of a large amount of profile information inside corresponding social networks. 
Thus, sharing and reusing user’s information accessible crosswise over OSNs is an emerging 
challenge. Xuan et al. [7] have presented a primary social user aggregation based on the FOAF 
ontology. However, the model has neither kept trace of the provenance nor adding time of any 
information. Moreover, there may be conflicting values for a given property and it is left to the 
user to decide if information should be kept or deleted.  
   Carmagnola et al. [8] have proposed a mechanized coordinating calculation which under the 
set of user characteristics like sexual orientation, birthday, city, can register the likely 
comparability between these starting characteristics and creep information from social sites. 
More is the information crept, more precise is the calculation. In any case, ambiguous 
information is freely accessible because of the closeness of the majority of prominent OSNs. 
Another OSN Aggregator proposed by Zhang et al. [9] not only pulls the social information 
from multiple networks, but also group, rate and notifies about the activities of friends.  
However, the system failed to integrate the networks. In fact, numerous models have been 
advanced to outline a collective objective model for assimilating a user [10]. Abel et al. [11] 
aggregated user profiles on the limited set of properties like name, photos etc. using the most 
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popular solution FOAF from online social networks by applying rules. 
Orlandi et al. [12] models the user interest by combining the profile information and 

semantic web using FOAF ontology and DBpedia resources. Shapira et al. [13] developed a 
collective recommender system by exploiting user inclinations. Rohani et al. developed a 
robust recommender system for academic social networks to recommend and analyze the 
products that meets the user’s preferences [14]. Further to model the interest of the user, 
various weighted concepts using semantic web are listed in [15]. Twitter and Facebook were 
the domains used for extracting information for the exploration of text. Few other models have 
considered expertise and relationship of user into consideration and developed a social search 
engine [15]. 

Wang and Jin [16] personalized the search results by incorporating users interest from 
multiple social netwroks using social activities of user such as bookmarking. Zhou et al. [17] 
have retreived the information about the user using historical usage information of the user. 
Yang S. [18] have employed the collection of operators on the graph and explored the Social 
Network Graph Query Language for performing a search on social media in a natural 
language.  The system was imlplemented by building database management system from 
scratch that can make the contol of components easy rather than taking inputs from existing 
social networks. Groh and Hauffa [19] have characterized the social relationships using 
unsupervised learning and natural language techniques for the purpose of linguistic analysis 
on the classification of sentiment polarity. 

Shojafar et al. [20] explored two novel parameter tunable frameworks for efficient route 
discovery with the use of topological information and collaborating peers. A uniform 
watchtower framework for delay efficient with minimum bandwidth cost and latency to 
discover the route was proposed. Cordeschi et al. [21] described a scalable scheduler for 
optimizing the streams of Big Data, which takes the advantage of optimal distribution of the 
virtual resources. Mukhopadhyay et al. [22] proposed research study works effectively and 
handles the challenges of relevant not reachable web pages.  

There have been numerous attempts to search for the structured data but none of the attempts 
is appropriate for unstructured data search engine [23]. However, structured database supports 
text indexing but they agonize from poor performance [12][13]. The dwelling of literature 
clearly indicates the fact that aggregating the profiles of the social network provides a large 
amount of information about the user and no author has made an attempt to extract the 
information from this pool in a user-friendly way. The work proposes the architecture of 
retrieving the information from the query written in a natural language for the social network 
aggregator by extracting entity, mapping it to its semantic meaning, identifying user preferred 
profiles and improving upon the user’s preference by ranking the profiles. 

This paper is structured into five sections:  Section 1 introduces and throws light on the work 
of eminent researchers highlighting the substantial contributions. The discussion in section 1 
illustrates that none of the authors till date has tried to extract the information from the social 
network by processing the query in a natural language. The current work thus finds motivation 
and resolves the challenge listed above.  Section 2 uniquely contributes a Query processing 
System (QPS), a content Based Semantic Match Maker (CBSMM), a Machine Learning 
mechanism (MLM) and a Ranking mechanism.  In contrast to QPS which extracts the entities 
of a query, CBSMM performs matching of these entities to their semantic meaning. MLM 
extracts the identities from the social network and Ranking sorts the output user’s profiles as 
per the query and other prevailing factors.  Section 3 details the case study of the proposed 
work. This has been established with a data set in the results and discussion section given in 
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section 4. Section 5 finally concludes.  

2. Proposed Work 
Consider a scenario where a user A wish to search for a Female and knows Java. In order to 
address such a query, in a conventional mode, user A would explore the popular social 
networks adding the additional details such as work sector. Integrating such profiles is a 
challenge for naive users and a simple solution to address the issue is highly desired. The 
section proposes a technique for smooth management of extracting information from user 
profile across multiple social networks.  
   The proposed model provides a natural way of managing, processing, and analyzing the 
complex, heterogeneous unstructured data. Designing such a new system that accommodates 
the voluminous data requires rethinking all aspects of a DBMS, including data modeling, 
storage management, indexing, query processing and optimization. It shall allow the entire 
social web to give personalized content or recommendation to the formal queries. QPSSN 
extracts user’s public information and preferences across their online presence. The result of 
the intelligent search is the direct answer to the user’s query instead of the networks to follow. 
The user-centric search shall help users find places, skills, users or product that their friends or 
other people in the network have. It will improve the discoverability of a user in the social 
network for businesses and implication for many companies.  As outlined in Fig. 1, the 
proposed model primarily comprises of four modules namely, Query Processing System 
(QPS), Content Based Semantic Matcher Maker (CBSMM), Machine Learning Mechanism 
(MLM) and Ranking of results. 
 

 
Fig. 1. Architeture of QPSSN 
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2.1 Query Processing System (QPS)  

Primary aim of QPS is to extract the possible entities from the input query and determine the 
context of each entity. It exploits existing NLP techniques [24]. QPS majorly contributes 
towards entity recognition (noun phrase) and its extraction and executes in four phases namely 
user interface, preprocessing, entity tagging and context extractor (see Fig. 2). 
    QPS takes user query as inputs form user interface which in turn are pre-processed using 
parsers and stemmers generating entities. During pre-processing, query text is tokenized and 
cleaned (the determiners are characterized under stop words) by removing all stop words. This 
module finds its space from the list of stop rundown of words which are insignificant for the 
input [25]. QPS makes use of Morphological analyzer [26] and Porter’s stemming algorithm 
[27] to establish relation between the words and stemming of the words to its root.  
 
 

 
 

Fig. 2. QPS Pipeline 
    

    In the next phase i.e. Entity Tagging, labels are assigned to the connected words produced 
during previous phase. An entity tag differentiates the word as noun, pronouns, descriptors, 
determiners and verb.  Entity tagging is based on Penn Tree Bank Parser [28] that interprets 
structure of the phrase. Entity tagging results into tagged entities that serves as input to the 
context extractor which in turn returns the ontology of the entities. The Context extractor tries 
to find a matching Ontology from the Ontology knowledgebase. In case no matching Ontology 
could be found, the context extractor requests the desired ontology from the user and in turn 
generates semantic information about the tagged entities. This is achieved by a user interface 
which does the required integration with user to get the required context.  It is worth 
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mentioning that context extractor of QPS is assisted with an ontology knowledge base 
containing ontological data to generate pragmatics. Algorithm for QPS is as shown in 
Algorithm 1. The semantic information thus generated serves as input to CBSMM to enhance 
the semantic ontological information. The mapping of context given by QPS and enhanced 
context by CBSMM results into the resolution of heterogeneity in ontology. 
 

Algorithm1 : Query Processing System 
 
Input: Query in Natural Language 
Output: Context 
 
QPS(Query) 
{ 
cleaned_Query = Activate PreProcessing(Query); 
tagged_Entity = Activate EntityTagging(cleaned_query); 
Context = Activate ContextExtractor(tagged_Entity) 
return Context; 
} 
 
PreProcessing(Query) 
{ 
Nonword = Identify nonword(query) 
If nonword ≠ NULL 
     delete nonword tokens 
Words = Parse(text) 
stopword = Identify stopwords(words) 
If stopword ≠ NULL 
         Remove stopwords 
cleaned_Query = Stemming (!stopwords)//Porter’s stemming algorithm 
Return cleaned_Query 
} 
 
EntityTagging (cleaned_query) 
{ 
For each keyword from cleaned_query 
        tagged_Entity = tag(keyword) // use Penn Tree Bank Parser 
Return tagged_Entity 
} 
 
ContextExtractor(tagged_Entity) 
{ 
For each tagged_Entity 
        Context = search ontologyknowledgebase(tagged_Entity) 
       If context ≠ NULL   then 
          Return context 
      Else 
         Context  =  user_interface(tagged_Entity) 
        Return Context 

       } 
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2.2 Context Based Semantic Match Maker (CBSMM) 

CBSMM refines the context obtained from the QPS to enhance and enrich the context. This 
essentially means that the scope of the context obtained will be intelligently increased so that 
more relevant and wider knowledge is retrieved. The domain knowledge is fed by an in-build 
knowledge base with learning capability. CBSMM follow the following rule map to augment 
the context.  

1) Context Engine analyzes the context obtained from QLP module and fetches the 
relevant ontologies from the knowledge base. This is called context enrichment and 
enhancement because the scope of context will now be improved to include other 
relevant ontologies as well 

2) Knowledge base is a database where all context and ontologies which the system 
possess or have learnt are stored. 

3) Rule Mapping will map the entities to provide all semantically related terms and 
context which will eventually increase the scope of the context search. This rule map 
will serve as the input to next module MLM 

4) Learning engine will feed knowledge into the knowledge base for every new 
context-ontology pair. Possibly obtained from the user inputs in QLP module. 

A simple flow of information in CBSMM is shown in Fig. 3 and algorithm is shown in 
Algorithm 2. 
 

 
 

Fig. 3. CBSMM Pipeline 
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Algorithm 2:  Context Based Semantic Match Maker  
Input: Context 
Output: Rule_Ontology 
 
CBSMM(Context) 
{ 
Rule_ontology= Activate Context Engine(Context);        
Return Rule_ontology 
} 
 
Context Engine(context) 
{ 
semantic_info = Search KnowledgeBase(context); 
if semantic_info ≠  NULL then 
for each context in semantic_info  
Rule_ontology = map ContextRuleMap(context,,semantic_info); 
Return Rule_ontology 

      } 

 

2.3 Machine Learning Mechanism 

MLM is the main module that returns the search results based on the refined ontologies as 
processed by CBSMM Module. Each context is searched in cluster registry to obtain 
appropriate matching cluster(s) that matched user criteria. In case there is no appropriate 
cluster available, the MLM dynamically generates the cluster. The architecture of MLM is 
elaborated in Fig. 4 and algorithm in Algorithm 3. 
 
   MLM has four components that return the set of user profiles. The following states the 
process of MLM:- 
 

1) CRegistry: It maps the context to cluster id (CID) that is related to a particular context. 
This CID is then used to fetch the information from the CDatabase.  

2) CEngine: The CEngine is associated with CDatabase and invokes particular cluster 
from the CDatabase on the basis of CID given by CRegistry. It also entreats the 
CCreation if a relevant CID is not returned by the CRegistry.  The cluster generated 
from the CCreation is then stored in the CDatabase, an id is allocated and stored into 
CRegistry. 

3)  CDatabase: It consists of clusters of user profiles having useful information about the 
user. It also manages, synchronizes and collaborates with each other to find the 
composite solution when an optimum CID is not returned by the CRegistry.  

4) CCreation: It create the clusters dynamically to fetch the relevant data, if the 
CDatabase does not have a cluster corresponding to the ontology, cluster is created 
and an entry is also made to CDatabase and CRegistry. 



1176                     Virmani et al.: Design of Query Processing System to Retrieve Information from Social Network using NLP 

 
Fig. 4. MLM Architecture 
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It is an obvious fact from the above discussion that the MLM has the ability to learn and act 
pro-actively in the environment and produce better results. It increases the probability of 
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found by the MLM. Considering the queries of all users enrolled on social network, it always 
return the user’s public profile information like name, photo, location etc. independent of the 
query. Preparing the query once and reusing it, ensures that planning is done once and hence 
increase the overall performance. The algorithm for MLM is shown in algorithm 3 and 
algorithm 3(a) depicts the pseudocode for generating dynamic clusters. 
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    CID=search CRegistry(Rule_ontology) 
        If CID ≠ NULL then 
           Cluster_user_profiles = search CDatabase(CID) 
            For each user = user1 in cluster_user_profiles  
                                             Accuracy_Score = calculate accuracy(user1,query); 
                                            Threshold_score=0.85; 
                              If (threshold score>Accuracy_Score); 
                         Return user1; 
        Else  
                  Dynamic_solution = Activate Dynamic_Cluster(users,query); 
                  Return Dynamic_solution_user1; 
} 

 
Algorithm 3a  : Generate_Dynamic_Clusters 
Input: User_Profiles 
Output: Clusters 
Dynamic_Cluster (users,query) 

{ 
Clusters = Activate LDA_Clusters(users,query); 
Clusters_info = Extract Info(Clusters); 
Register Clusters and Clusters_info in CDatabase and assign a CID; 
Register CID in CRegistry 

              If CID ≠ NULL then 
                                 For each Dynamic_Solution_user = user1 in Clusters;  
                                             Accuracy_Score = calculate accuracy(user1,query); 
                                            Threshold_score=0.85; 
                              If (threshold score>Accuracy_Score); 
                         Return Dynamic_Solution_user1; 

 
} 

 

2.4 Ranking  

This module ranks the user profiles resulting from the MLM on the basis of weighted score so 
that most relevant profile results first. The Rank of the user profile is computed by a weighted 
score of the user to the group. The ranking architecture encompasses two major components to 
rank the desired documents i.e. Rank Engine and Sorting as shown in Fig. 5 and the algorithm 
is shown in algorithm 4.  
   The Rank Engine computes the Rank or weighted score based on user to user interaction. 
The user interaction could be further categorized as user-group, user-user and mutual friends. 
Here, User-Group Interaction determines the common groups between the searcher and users 
from the seed. If a common group exists, then the user who frequently interacts and has 
recently interacted with the group will be more important than the one who least interacts. 
User-User Interaction determines the score of interaction between two users. The recent 
interaction between the searcher and the user returened by the cluster will be given a high edge 
over another. In case of mutual friends, the score of common friends between the two user is 
evaluated. The sorting module sorts the user profile on the basis of the weighted score as 
calculated from above three approaches and provides the output to the user interface. 
 



1178                     Virmani et al.: Design of Query Processing System to Retrieve Information from Social Network using NLP 

 
Fig. 5. Ranking Architecture 
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   Group_User_Interaction(Group,user1,user2) 
{ 
For each Group in user1 and user2  
        For each post in Group 
                  If  Likes(user1) and Likes(user2) then 
                               Group_User_Interaction =Group_User_Interaction+1 
        Return Group_Uer_Interaction 
} 
 
   Mutual_Friends(user1,user2) 
{ 
For each SN user1 belongs 
                    score=Extract_Common_Friends(user1,user2) 
Mutual_Friends=(score1+score2___+scoren)/n   
Return Mutual_Friends 
} 

 
 
The next section illustrates the working of QPSSN with a case study implemented on Intel 
Core i5 with 8GB RAM using Windows 7 Operating System. 

3 The Case Study 
The algorithm was given the input query “Friends who knows java” and the description of 
each step by step output thus obtained is as illustrated below.   

 
Input: Friends who know Java. 
Output: Sorted User Profile set 

 
• Processing in QPS Module 

 
Input: Friends who Know Java 

 
Following steps were followed 
1) The input string in tokenized into keywords: Friends, who, know, Java 
2) Stemming is performed to remove the filler words. Resultant keywords are Friends, Java 
3) Keywords are tagged as Noun 
4) Friends is assumed to be a known keyword and Java being an ambiguous keyword is 

tagged to Skill, Location, Name ontologies 
5) User was asked to suggest ontology for Java; and user chose the ontology Skill.  
  
Output:  keyword-ontology Pair as shown in Table 1. 

 
Table 1.  Keyword-Ontology Pair 

Keyword Ontology User Input 
Friends Friends N 
Java Skill Y 

 



1180                     Virmani et al.: Design of Query Processing System to Retrieve Information from Social Network using NLP 

 
• Processing in CBSMM Module 

 
Input:  Table 1: Keyword-Ontology Pair 

 
Following steps were followed:  
1) Context Engine takes the relevant Ontologies as input.  
2) Context Engine Searches the refined Ontologies from the Context Knowledge base and 

results some related ontologies.  
3) Rule map has created which maps the keyword to other Ontologies. Let us assume that our 

rule map defines the following for the keyword Friends (language) is as shown in Table 2. 
Table 2. Enhanced related terms 

Keyword Ontology 
Friends  Friends: Mutual Friends, Tagged friends, 

Shared links etc. 
Java as a skill Skill: Eclipse, Core Java, Beans , EJB, Sun 

Microsystems 
 
Output:  Enhanced Ontology and Rule: Friends(language) 
 

• Processing in MLM Module 
 

Input:  Enhanced Ontology and Rule: Friends(language) 
 
Following steps were followed 
1) Search the CRegistry for CID matching with Ontologies and the result of CRegistry is as 

shown in Table 3. 
Table 3. CID 

CID Ontology 
C_Friends  Friend 
C_Java  Java 
C_Eclipse Eclipse 
C_Beans Beans 
C_sun Sun microsystems 

 
2) CEngine retrieves the relevant user profile set from the CDatabase as shown in Table 4. 

Table 4. Output of cluster engine 
Cluster ID User Profiles 
C_Friends  P1, P2 
C_Java  P2, P3, P4 
C_Eclipse P2,P4 
C_Beans P2,P4 
C_Sun P2,P4,P5 

 
Output: User Profile Set {P1, P2,P3,P4,P5} 
 
• Processing in Ranking Module 

 
Input: User Profile Set {P1, P2,P3,P4,P5} 
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Following steps are performed 
1) Weighted score for each user profile. Demo values shown in Table 5. 

 
Table 5. Weighted score 

User Profile Weighted scores 
P1 0.2 
P2  0.8 
P3 0.5 
P4 0.7 
P5 0.2 

 
2)  Sorting of user profiles based on scores  {P2,P4,P3,P1,P5} 
Output: Ranked User profile set {P2,P4,P3,P1,P5} 

4. Results and Discussions 
This section describes the experiments on the data set from multiple social networks as 
discussed in the previous section. The data collection system extracts different data metrics 
from different social media platforms with the help of input search queries.   
   The system has selected 20 different user-skills as the input queries such as - “java”, 
“python” and “mongo” etc. The system collects the different data metrics such as - user-name, 
user-location, user-description, gender, birth, connections, tweets, etc. from multiple social 
media platforms by using user’s information from the online social media API‘s. The system 
collected user-level data and user demographics using Twitter public search. The system 
collected 67,956 documents. The mixed inputs of user-variables in the Bing Search API’s are 
used to collect the information of around 87,734 links out of them 35,413 were user profile 
links, however only 26,543 of them had exact matches with the input-queries of the twitter 
public search. The system has also used FullContact to extract the alternative user-profiles of a 
twitter user. The system collected total 24,341 user-links from Fullcontact, These results were 
merged with those obtained from Search Engine Automation component. It is worth to 
mention that due to the restriction of offered attributes by API’s of different social networks, 
the system could only use limited features of profile.  The user’s information is collected using 
access token and a prior approval from the users has taken to use the user’s data for the 
research purpose only. A sample used 100 set of queries for testing the system. The samples of 
input query are: 
 

• Friends who live in U.S and  knows DataScience 
• Friends who are single and above 25 years 
• Friends who works in TCS and is female 
• People who live in London 
• Looking for Java developer 
• We require Java developer 
• We require Java developer who lives in Delhi 
• People who live in London and knows Python 
• Looking for Java developer who lives in Gurgaon 
• Friends who live in U.S and  knows DataScience 
• Friends who live in India and  knows DataScience 
• Friends who live in U.S and  knows Database 



1182                     Virmani et al.: Design of Query Processing System to Retrieve Information from Social Network using NLP 

 
   The system utilizes Latent Dirichlet Allocation (LDA) clustering to create clusters and 
allocates a reference id to each cluster. The clustered data are then trained in the classifier. The 
entities placed to form the users are collected and fed to classifier. The classifier compares the 
query with the trained data and finally classified results are obtained as the output. The output 
of language cluster depicting the skills for particular location U.S. is shown in Fig. 6. Fig. 7 
represents the count of users for different cities of U.S. for the skills datascience, database and 
javascript. 
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         Fig. 6. Clustering Output – Language 
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              Fig. 7. Count of User for Different Skills for Different Locations 

 
For the input queries, the system is able to extract the relevant profiles from these clusters as 
per the cluster id. During the course of implementation, it has been observed that the system 
results in the expected user profile at the top 3 ranks. The query processing dialog box is as 
shown below Fig. 8. Potential user profiles available from multiple social networks has 
recommended according to the given query. The query given is the search of java developer 
from various social network user profiles. The Output of the query is as shown in Fig. 9. 
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                 Fig. 8. Query processing Dialog box 
 

 

Fig. 9. Output of Matlab 
 

In information retrieval and query processing, the precision is the fraction of retrieved 
documents that are relevant to the query.  
 
Precision = Total Number of Relevant user profiles found / (Total Number of Relevant user 
profiles found  + Total Number of irrelevant user profiles) 
 
   High precision depicts that the quality of retrieved results achieves the performance close to 
the expectations of the users.  The proposed work was carried on 1000 number of user profiles 
to 5000 users profiles. The precision value, true positive rate and false positive rate of the 
query search are obtained. The Precision of QPPSN to measure the accuracy and the 
traditional keyword search is compared in Fig. 10.  
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Fig. 10. Comparison of Precision Value to Measure Accuracy 
 

   A Receiver Operating Characteristic (ROC) graph is a technique for visualizing, organizing 
and selecting classifiers based on its performance. It represents a relationship between 
sensitivity (Recall) and specificity. It is a tool to evaluate quality of cluster production, which 
shows the actual positive rate on the Y-axis and the curve showing the false positive rate on the 
X-axis. True positive means a match output agrees with the value present in the test case. The 
threshold is set to be limited, resulting in a false positive rate of less than 4%. The ROC curve 
of the query is as shown in Fig. 11. 
 

 

Fig. 11. Roc Curve Depicting the True Positive Rate Vs False Positive Rate for Test Corpus 
 

The result of the query is the first best option that meets the criteria as given in Fig. 12 
 

Number of users 
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Fig. 12. Result of the Query 
 
The sorted list of output is as shown in Fig. 13. 
 

 
Fig. 13. Sorted List of Query results 

5 Conclusions 
QPSSN proposed to extract the information from the user profile from various social networks 
using an efficient algorithm that takes the input query in a natural language. The system is 
tested for a set of 100 queries and derived that the expected result results in top 3 users by the 
system. The simulated results have shown the fact that natural language processing on the 
query using multiple social networks will increase the discoverability of the user, will help the 
organizations and businesses to collaboratively execute promotions, determine new networks 
and people. It is more efficient and superior to the advanced user profile mapping using 
keyword searching. The proposed research method can be used for background verification 
purpose, recruitment agencies, targeting specific group of people. However, the system only 
considered the public available attributes, in the future; it can be extended to search for 
post/tweets to make provision for real-time interaction.  
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