초록
Recently, development of deep learning has shown better image classification result than human. According to recent research, a hidden layer of deep learning is deeper, and a preservation of extracted features shows good results. However, in the case of general images, the extracted features are clear and easy to sort. This study aims to classify plant leaf images. This plant leaf image has high similarity in each image. Since plant leaf images have high similarity not only between images of different species but also within the same species, classification accuracy is not increased by simply extending the hidden layer or connecting the layers. Therefore, in this paper, we tried to improve the hidden layer of the algorithm called DenseNet which shows the recent excellent classification results, and compare the results of several different modified layers. The proposed method makes it possible to classify plant leaf images collected in a natural environment more easily and accurately than conventional methods. This results in good classification of plant leaf image data including unnecessary noise obtained in a natural environment.