DOI QR코드

DOI QR Code

The Change in Interfacial and Mechanical Properties for Glass Fiber/p-DCPD Composites with Degree of Ruthenium Catalyst Activation

루테늄촉매 활성정도에 따른 유리섬유/폴리다이사이클로펜타다이엔 복합재료의 기계 및 계면물성 변화

  • Shin, Pyeong-Su (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kim, Jong-Hyun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Baek, Yeong-Min (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Ha-Seung (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Kwon, Dong-Jun (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Park, Joung-Man (Department of Materials Engineering and Convergence Technology, Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • 신평수 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 김종현 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 백영민 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 박하승 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 권동준 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소) ;
  • 박종만 (경상대학교 나노신소재융합공학과, 그린에너지융합연구소)
  • Received : 2018.01.15
  • Accepted : 2018.03.14
  • Published : 2018.03.31

Abstract

At ruthenium (Ru) catalyst was exposed from the atmosphere, the degree of catalyst activation decreased. The change of catalyst activity with the number of days of exposure to air for the Ru catalyst was confirmed using the surface tension method quantitatively. Mechanical properties and surfactant change after polymerization by DCPD using Ru catalyst for each air exposure day was evaluated. The Ru catalyst mixed with a dilution agent was exposed in the air and color was monitored for each day. Surface tension was measured using Wilhelmy and PTFE and associated with different catalyst activities. Heat was measured in real time during polymerizing DCPD with Ru catalyst. After polymerization, tensile strength was measured for p-DCPD and the change of material property was measured. Interfacial properties were also evaluated via microdroplet pull-out tests between glass fiber and p-DCPD. The surface tension was stable until the 4 days (33 dyne/cm) whereas the surface energy increased at the 10 days (34 dyne/cm), which could be correlated with oxidation of the catalyst. Tensile property and interfacial shear strength (IFSS) was also stable until the 4 days (tensile strength: 38 MPa and IFSS: 26 MPa) whereas the mechanical property decrease at 10 days (tensile strength: 15 MPa and IFSS: 3 MPa) dramatically.

루테늄촉매는 대기중에 노출되었을 때, 촉매활성정도가 떨어지게 된다. 루테늄 촉매의 촉매활성변화를 대기노출 일수에 따라 표면장력방법을 이용하여 정량적으로 확인하였다. 각 대기노출일수에 따른 루테늄 촉매를 이용하여 DCPD 중합 후 기계 및 계면물성변화를 확인하였다. 희석제와 10:1로 섞인 루테늄 촉매를 대기 중에 노출 시킨 후 각 일수에 따라 색깔 관찰하였다. 윌헴리 및 PTFE를 이용하여 표면장력을 구하고 이를 촉매활성 정도와 연관시켰다. 각 촉매를 이용하여 DCPD를 중합시키는 데 발열량을 실시간으로 측정하였다. 경화 후 p-DCPD에 대하여 인장강도를 측정하여 물성감소정도를 확인하였다. 또한, 유리섬유 간 마이크로드롭렛 풀 아웃 실험을 통하여 계면물성 또한 파악하였다. 표면장력방법을 통하여 촉매활성 정도를 확인하였을 때, 4일까지는 33 dyne/cm로 안정적이었지만, 6일 이후로 표면장력이 34 dyne/cm 이상 증가하는 것을 확인하였고, 이는 촉매의 산화와 연관시킬 수 있었다. 기계적 물성 확인하였을 때, 인장강도 및 계면강도 또한 6일 (인장강도: 38 MPa. 계면전단 강도: 26 MPa) 까지는 안정적이었지만 10일 (인장강도: 15 MP. 계면전단강도: 3 MPa) 이후로 물성이 급격하게 감소하는 것을 확인하였다.

Keywords

References

  1. D. J. Kwon, Z. J. Wang, J. J. Kim, K. W. Jang and J. M. Park, Journal of Adhesion and Interface, 14, 75 (2013). https://doi.org/10.17702/jai.2013.14.2.075
  2. D. J. Kwon, P. S. Shin, J. H. Kim, H. S. Park, Y. M. Baek, K. L. DeVries, and J. M. Park, Composites Part B, 123, 74 (2017). https://doi.org/10.1016/j.compositesb.2017.05.020
  3. L. Guadagno, P. Longo, M. Raimondo, C. Naddeo, A. Mariconda, V. Vittoria, G. Iannuzzo, and S. Russo, Composites Parts: B, 42, 296 (2011). https://doi.org/10.1016/j.compositesb.2010.10.011
  4. D. B. Knorr, K. A. Masser, R. M. Elder, T. W. Sirk, M. D. Hindenlang, J. H. Yu, A. D. Richardson, S. E. Boyd, W. A. Spurgeon, and J. L. Lenhart, Composites Science and Technology, 114, 17 (2015). https://doi.org/10.1016/j.compscitech.2015.03.021
  5. K. A. M. Vallons, R. Drozdzak, M. Charret, and S. V. Lomov, 20th International Conference on Composite Materials, Copenhagen, (2015).
  6. S. Xia, K. L. Jong, and R. K. Michael, Journal of Composites Materials, 48, 2023 (2013).
  7. B. Pan, Y. Zhao, Y. Zhang, and Y. Zhang, 2nd International Conference on Mechanical, Industrial, and Manufacturing Engineering, (2012).
  8. C. H. Hong, S. W. Song, B. U. Nam, B. J. Cha, and B. J. Kim, Polymer(Korea), 30, 311 (2006).
  9. M. B. Dinger and J. C. Mol, Organometallics, 22, 1089 (2003). https://doi.org/10.1021/om0208218