DOI QR코드

DOI QR Code

Characterization of Modified Chloroprene Rubber by Nanosilica as a Primer

Modified Chloroprene Rubber를 이용한 Primer 제조 및 특성평가

  • Lim, Gyeong Eun (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Jeong, Boo Young (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Cheon, Jung Mi (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Choi, Min Ji (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Chun, Jae Hwan (Korea Institute of Footwear and Leather Technology (KIFLT))
  • 임경은 (한국신발피혁연구원 고분자표면연구실) ;
  • 정부영 (한국신발피혁연구원 고분자표면연구실) ;
  • 천정미 (한국신발피혁연구원 고분자표면연구실) ;
  • 최민지 (한국신발피혁연구원 고분자표면연구실) ;
  • 천제환 (한국신발피혁연구원 고분자표면연구실)
  • Received : 2017.11.09
  • Accepted : 2017.12.13
  • Published : 2018.03.31

Abstract

Water In this study, CR/silica nanocomposites were produced by dispersing nanosilica on chloroprene rubber (CR) to apply toluene-free primers for mobile devices. The properties of the modified chloroprene rubber using nanosilica was evaluated through FT-IR, SEM, EDS, Contact angle. The SEM images indicated that P-4 (4 phr) was the most homogenously dispersed. Pencil hardness measurements and Contact angle indicated that the hardness of the CR/silica nanocomposite and the hydrophobicity increased with increase in the silica content. The peel strength of P-4 (4phr) was the highest and the initial peel strength of P-4 sample (2.9 kgf/inch) was 50% higher than that of the P-0 sample.

본 연구에서는 부착력 향상 및 모바일 기기용 toluene-free 프라이머를 제조하기 위해 클로로프렌 고무 (CR)에 실리카 나노입자를 분산시켜 CR/silica 복합체를 제조하였다. CR/silica 복합체는 FT-IR, SEM, EDS 등을 이용하여 물성을 평가하였다. SEM을 통해 실리카 나노입자의 함량이 4 phr일때 가장 균일하게 분산되어 있는 것을 확인하였다. 접촉각과 연필경도측정을 통해 실리카 함량이 증가할수록 소수성을 띠는 것과, 연필경도가 증가함을 나타내었다. 부착력 결과 역시 실리카 함량이 4phr일때 가장 높았으며, 실리카가 함유되지 않은 P-0에 비해 50% 증가함을 확인하였다.

Keywords

References

  1. B.Y. Jeong, J.M. Cheon, S.J. Lee, J.B. Moon, J.H. Chun, Journal of Peel strength and Interface, 14, 3, (2013).
  2. L. M. Siperko, Appl. Spectrosc., 43, 226, (1989). https://doi.org/10.1366/0003702894203237
  3. J. Brass, D. M. Brewis, I. Sutherland, and R. Wiktorowicz, Int. J. Adhes., 11, 150, (1990).
  4. R. A. Bragole, Adhes. Age., 17, 24, (1978).
  5. S. J. Park, K. S. Cho, and S. H. Kim, Korean Chem. Eng. Res. (Hwahak Konghak), 40, 613, (2002).
  6. R. Kruger and H. Potente, J. Adhes., 11, 113, (1980). https://doi.org/10.1080/00218468008078910
  7. V. L. Vakula and L. M. Pritykin, Ellis Horwood Ltd., New York, (1991).
  8. D. L. Cho, Polym. Sci. Technol., 6, 499, (1995).
  9. M. Tatoulian, F. A.-Khonsari, N. S. Z. Ahmadi, and J. Amouroux, Int. J. Adhes., 15, 177, (1995). https://doi.org/10.1016/0143-7496(95)91629-K
  10. J.Y.Kim, S.J.Kim and J.S.Na, Appl. Chem. Eng., Vol. 21, No.5, 514, (2010).
  11. I.K.Sung and C.Y.Park, Elastomers and Composites, Vol. 50, No. 4, 279, (2015). https://doi.org/10.7473/EC.2015.50.4.279
  12. M. Alexandre and P. Dubois, Materials Science and Engineering, 28, 1, (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  13. V. Castelvetro and C. D. Vita, Advances in Colloid and Interface Science, 108, 167, (2004).
  14. 日本 電氣化學工業 株式會社, Denka Chloroprene Handbook, ed., 133, (1990).