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Abstract 
 

An important technique used by database administrators (DBAs) is to improve performance in 

decision-support workloads associated with a Star schema is multi-level partitioning.  Queries 

will then benefit from performance improvements via partition elimination, due to constraints 

on queries expressed on the dimension tables.  As the task of multi-level partitioning can be 
overwhelming for a DBA we are proposing a wizard that facilitates the task by calculating a 

partitioning scheme for a particular workload.  The system resides completely on a client and 

interacts with the costing estimation subsystem of the query optimizer via an API over the 
network, thereby eliminating any need to make changes to the optimizer.  In addition, since 

only cost estimates are needed the wizard overhead is very low. By using a greedy algorithm 

for search space enumeration over the query predicates in the workload the wizard is efficient 
with worst-case polynomial complexity. The technology proposed can be applied to any 

clustering or partitioning scheme in any database management system that provides an 

interface to the query optimizer. Applied to the Teradata database the technology provides 

recommendations that outperform a human expert’s solution as measured by the total 
execution time of the workload. We also demonstrate the scalability of our approach when the 

fact table (and workload) size increases. 
 

Keywords: Data warehousing, information systems, star schema, fact table, OLAP, 

analytical workloads, multi-level partitioning 
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1. Introduction 

Over the past decades much attention has been paid to improve the performance on 

analytical workloads like OLAP in a data warehousing environment. A relational database 

management system (DBMS), which underlies information systems, has been exploited to 
process such analytical queries faster and assist customers to draw a timely business-decision 

in rapidly-changing enterprise data warehousing. Teradata DBMS has been positioned as 

leading one in this data warehousing marketplace getting more competitive than ever.   

Background: To optimize the performance of analytical processing in the Teradata DBMS, 
tables and materialized views are “hash-distributed” based on a user-specified column or set of 
columns called primary index. Each virtual processor, a unit of parallelism called AMP in the 

Teradata DBMS, receives a subset of the data and stores it in hash order. Users typically 

choose primary index fields in the DBMS, so that the data is evenly distributed among the 
AMPs. The primary index fields are also chosen to reflect join fields in workloads to 

accomplish cheaper local joins that do not require data shuffling.  

Partitioned Primary Index (PPI) [1] is an optional horizontal partitioning scheme applied 
locally on the data belonging to each AMP. In some other DBMSes, this type of partitioning is 

termed clustering, but hereafter we call the term partitioning only to avoid confusion. 
Database administrators (DBAs) usually choose the columns for PPI, based on join fields and 

single table predicates to optimize the queries included in the workload. The PPI columns are 

used to physically group data with the same values together in contiguous data blocks. This 

grouping enables “partition elimination” in scans and joins for performance enhancement. PPI 
can be specified as single or multiple levels. This type of partitioning scheme is known as 

Multi-Level PPI (MLPPI) [2].  

By allowing non-qualified partitions to be eliminated,MLPPI can considerably reduce the 
amount of data to be scanned to answer a query. But a large number of partitions can create 
significant overhead, particularly in joins and table maintenance operations such as inserts and 

deletes, so that the selection of partitions can be usually a balancing act. 

Table 1 exemplifies an MLPPI table with a defined partitioning option. The example is a 

subset of the LINEORDER table from the Star Schema Benchmark (SSB) [3]. (Note that the 

full table with modified data types was actually used in our experiments.) In the definition of 

LINEORDER in Table 1, the primary index is on LO_ORDERKEY. The primary index dictates 

the AMP on which a row will be located while the partitioning of data will be dictated by the 

values and ranges associated with LO_DISCOUNT and LO_QUANTITY. Specifically, 

LO_DISCOUNT has two ranges: (i) one for values >= 7 and (ii) another for all the other values 

(or NO CASE OR UNKNOWN), and LO_QUANTITY has four ranges. Hence, the relation will 

have a total of 2×4 = 8 partitions as shown in Table 2. 
Whatever partition is chosen, namely, the mapping of rows to partitions must be an 

injection. the selection must be semantically correct. In other words, the constraints must form 

a covering of the entire range, so that a row will belong to exactly one and one partition. The 

optimizer then applies partition elimination for queries that specify conditions on 

LO_DISCOUNT and/or LO_QUANTITY. For example, only partitions 1 and 2 are needed for 

the query ‘SELECT * FROM LINEORDER WHERE LO_DISCOUNT >= 7 AND 

LO_QUANTITY <= 30.’ Similarly, partitions 1 and 5 are sufficient to answer the following 

query: ‘SELECT * FROM LINEORDER WHERE LO_QUANTITY < 25.’  
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Table 1. An Example of a LINEORDER Table [3] with Multi-level Partitioned Primary Index 

Fact table Partitioning Candidate 

LineOrder 

CREATE TABLE LINEORDER ( 

      LO_ORDERKEY INTEGER, 

      LO_QUANTITY INTEGER, 

      LO_DISCOUNT INTEGER) 

PRIMARY INDEX ( LO_ORDERKEY ) 

PARTITION BY ( 

CASE_N(LO_DISCOUNT >= 7, NO CASE OR UNKNOWN), 

CASE_N(LO_QUANTITY >= 25 AND LO_QUANTITY <= 30, 

         LO_QUANTITY > 30 AND LO_QUANTITY <= 35, 

         NO CASE OR UNKNOWN)); 

 
Table 2. All Possible Partitions by LO_DISCOUNT and LO_QUANTITY 

Partition Number Condition 

1 LO_DISCOUNT >= 7 && LO_QUANTITY < 25 

2 LO_DISCOUNT >= 7 && 25 <= LO_QUANTITY <= 30 

3 LO_DISCOUNT >= 7 && 30 < LO_QUANTITY <= 35 

4 LO_DISCOUNT >= 7 && LO_QUANTITY no case 

5 LO_DISCOUNT no case && LO_QUANTITY < 25 

6 LO_DISCOUNT no case && 25 <= LO_QUANTITY < 30 

7 LO_DISCOUNT no case && 30 < LO_QUANTITY <= 35 

8 LO_DISCOUNT no case && LO_QUANTITY no case 
 

 

Challenge: Consider the query set Q with two queries q1 and q2 on the SSB as illustrated 

in Table 3. A DBA may focus on the LINEORDER fact table and the predicates involving the 

table’s columns only. The DBA can then figure out the five constraints, identified by the query 

number and the sequence number of predicates in each query as shown in Table 4.  

At this point DBA needs to take into account options based only on two fields and the five 
constraints. There are many other possibilities from a “fine-grained” partition set to a 

“coarser-grained” definition.  

Given for the time being the column LO_DISCOUNT, one solution is to identify each 

value for the IN predicate in q1.1 and use q2.1 as is. This yields the partitioning expression 

(named Candidate 1) for LO_DISCOUNT as illustrated in the first row of Table 5. This 

expression minimizes the size of the partitions by focusing exactly on the values required to 

satisfy the constraints but creates a “large” number of “small” partitions.  

Another is to look at the maximum and minimum values in the IN set and to build an AND 

clause equivalent to a between clause yielding another candidate (named Candidate 2) as seen 

in the second row of Table 5. Candidate 2 decreases the number of partitions, compared to 

Candidate 1 but still focuses sharply on the constraints with still relatively small partitions.  

Similar considerations apply to the partitioning associated with LO_QUANTITY. The 

resulting partitioning definition for the table includes both LO_DISCOUNT and 

LO_QUANTITY, and thus the number of possible combinations is the product of the potential 

combinations for each field.  
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Table 3. An Example of a Given Star Schema Query Workload (Q) 

Query ID Query String 

q1 

SELECT SUM(l.LO_EXTENDEDPRICE * l.LO_DISCOUNT) 

FROM LINEORDER l, DDATE d 

WHERE l.LO_ORDERDATE = d.D_DATEKEY  

AND d.D_YEAR = ‘1993’ 

AND l.LO_DISCOUNT IN (1, 4, 5) 

AND l.LO_QUANTITY <= 30 

q2 

SELECT c.C_NATION, SUM(l.LO_REVENUE) 

FROM CUSTOMER c, LINEORDER l 

WHERE l.LO_CUSTKEY = c.LO_CUSTKEY 

AND c.C_REGION = ‘EUROPE’ 

AND l.LO_DISCOUNT >= 7 

AND l.LO_QUANTITY >= 25 AND l.LO_QUANTITY <= 35 

GROUP BY c.C_NATION  

ORDER BY revenue desc 

 

Table 4. The Extracted Query Predicates for Each of the Two Queries in Q 

Query Number.Sequence Number Query Predicate 

q1.1 LO_DISCOUNT IN (1, 4, 5) 

q1.2 LO_QUANTITY <= 30 

q2.1 LO_DISCOUNT >= 7 

q2.2 LO_QUANTITY >= 25 

q2.3 LO_QUANTITY <= 35 

 

Table 5. Possible Partitioning Candidates Based on LO_DISCOUNT 

Partitioning Candidates 

Candidate 1 

CASE_N(LO_DISCOUNT = 1, LO_DISCOUNT = 4, 

       LO_DISCOUNT = 5, LO_DISCOUNT >= 7, 

       NO CASE OR UNKNOWN) 

Candidate 2 
CASE_N(LO_DISCOUNT >= 1 AND LO_DISCOUNT <= 5, 

       LO_DISCOUNT >= 7, NO CASE OR UNKNOWN) 

Furthermore, given two queries one partitioning scheme may be favorable for one query 

but not for the other, or vice versa. Consequently, the DBA is faced with a daunting 
combinatorial search problem and no clear basis to decide on which combination is the best. 

This state of affairs begs for a “tool” for the DBA. 

Solution: To assist the DBA to draw a better partitioning solution, in this article we 
propose a novel physical database design tool, termed MLPPI wizard. The proposed tool 
recommends an effective partitioning solution customized for a given workload. The proposed 

tool uses a greedy algorithm for search space enumeration. The initial search space is driven 

by query predicates extracted from the workload. The tool utilizes the optimizer’s cost model 

to prune the search space and then reach the final solution. In particular, the tool is based on a 
“general framework” allowing general expressions, ranges and case expressions for partition 

definitions. Therefore, the predicate-driven technique used by the tool can be applied to any 

clustering or partitioning scheme based on simple fields and expressions or complex SQL 
predicates in an “arbitrary” DBMS.  
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Contribution: The article provides the following contributions. 

 We propose a novel physical database design tool, called MLPPI wizard, to produce a 
multi-level partitioning solution for minimizing the execution cost of a given query 

workload on a star schema of a data warehouse.  

 Our proposed tool uses a greedy technique by which we incrementally narrow down 
the search space, initially driven by the predicates of the given workload. 

 The tool’s predicate-driven method for search space enumeration can be applied to 
any clustering or partitioning scheme in a relational DBMS, allowing general 

expressions for partitioning definitions; note also that any complex query workload, 
giving many different partitioning options, can benefit from the proposed tool to find 

almost an optimal partitioning in an automated fashion. 

 Our tool is totally outside the database server, thereby incurring no overhead of 
instrumenting query optimizer’s code, which is required by some existing tools [4–6]. 

 To the best of our knowledge, our tool is the very first physical database design tool to 
address the multi-level partitioning problem on analytical workloads. 

 We empirically show that a partitioning recommendation of our tool outperforms 

those of a human expert and no partitioning over increasing workload size and 
growing fact table. 

This manuscript is a substantial extension of an earlier work [7]. The rest of the manuscript 
is organized as follows. In the subsequent section, we review some related works and elaborate 

on how the proposed tool is fundamentally different from existing tools proposed by other 
DBMSs. We in turn propose a multi-level partitioning algorithm—consisting of three 

phases—of our MLPPI wizard. Subsequently, we conduct a detailed analysis of the 

asymptotic complexity of the proposed algorithm. We then provide the performance 

evaluation results. Finally, we conclude this article by summarizing our discussion. 

2. Related Work 

Physical database design [4–22] has been discussed in academic research and industrial 

communities in the past decades. The major DBMS vendors have led much of the work. Their 

specific interests have been around automating the physical design for table partitioning      

[4–6, 12–14], indexes/materialized views [8, 15–21], and integration [22].  

Some of the tools in IBM DB2 [5], Oracle [12], and MS SQL Server [4] appear to be 
similar to our MLPPI wizard. With respect to problem scope and approach, however, our 

wizard is fundamentally different from the existing tools. First, DB2 MDC Advisor [5] 

actually tackles a different problem of automatically recommending the most well suited 

MDC keys for a given workload. Agrawal’s work [4] discusses another problem of merging 
single-level range partitionings on objects such as tables and indexes. On the other hand, we 

address the multi-level partitioning problem. Hence, the existing solutions cannot be directly 

applied to our MLPPI wizard.  

Regarding the approach, DB2 MDC Advisor [5] uses the search space driven by fields. In 
contrast, our search space is driven by query-predicates, of which the use is superior to that of 

the fields, as utilizing predicates can be more customized and specific to a given workload. 

Agrawal’s horizontal partitioning scheme [4] also uses the search space driven by simple 
range predicates, but his technique has a shortcoming. Specifically, his work produces a 

solution for each individual query and attempt to merge the solutions. However, this approach 
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cannot reach an optimized solution in a global perspective. We generate the whole search 

space upfront and in turn merge partitions, leading to a globally optimized solution. While his 
work considers a single column only, our wizard deals with multiple fields. 

Oracle Partitioning Advisor [12] provides no published technical details. Thus, we do not 
know its similarities and differences, compared with our work. 

As addressed in Section 1, implementations of previous tools [4–6] required 
instrumentation for optimizer code. These instrumentations are needed to facilitate the 

required information for the physical design tools API calls. The instrumentation code need to 

be enhanced and tested for new database releases that add complexity and additional cost for 
software upgrades. However, our algorithm is based existing APIs supported by an optimizer, 

which requires no code change in the optimizer. 

In addition, Nehme’s work [6], deeply integrated with optimizer, reveals a concern about 
the quality of the recommendations made by some tools, shallowly integrated with optimizer. 
However, we observed in our experiments that the quality of the wizard’s solutions was much 

superior to that of the base solutions. In addition, some might argue that in our loosely coupled 

approach the cost to invoke the optimizer might be significant. But the measured call counts 

were much fewer than the theoretical bound, since most calls were made only when queries 
were affected by a merge. 

Some previous work [6, 14, 23] tackles table partitioning in multi-node systems, but our 
problem is discussed in the context of a single node system, as in the existing work [4]. 

Database cracking [24] assumes a single node environment, but it does not address our 
multi-level partitioning problem. 

There exists also some other recent work proposing a multi-level algorithm or a 
recommendation system. Wang et al. [25] aim at improving online service under hybrid 

deployment, using an effective multi-level scheduling algorithm. Yuan’s work [26] proposes a 

top-k recommendation system for OLAP sessions for better user assistance.  Even though 
these works and our work seem to have something in common in terms of multi-level and 

recommendation, the existing works were discussed in a different domain from ours, mainly 

focusing on “partitioning” a fact table for better performance of a star schema workload. 

Finally yet importantly, there are some recent works [27, 28] addressing the problems of 
exploiting analytical workloads from the real scenarios. Those works have something in 
common with our work, in terms of utilizing analytical workloads. Each of these two camps, 

however, focuses on fundamentally different problems. The authors’ works seem interested in 

exploiting analytical workloads from the real studies in order to propose algorithms for 
efficient job and task scheduling in grid computing, but we exploit a given star schema 

analytical workload for producing with no human intervention a possible partitioning solution 

on a huge fact table for the DBA.  

3. The MLPPI wizard 

Fig. 1 shows the overall architecture of the wizard. As shown in Fig. 1, our wizard 
recommends the final MLPPI customized for a given workload consisting of a set of queries 

and corresponding weights while passing through a series of phases—Preprocessing, Initial, 

and Optimized Phases. Throughout this section, we elaborate in detail on each of the three 

phases, using the running query set Q comprised of q1 and q2 provided in Section 1, for better 
exposition. As seen in Fig. 1, the wizard resides completely on the client side, as opposed to 

several previous tools [4–6] that require optimizer code instrumentation. This loosely coupled 
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Fig. 1. The MLPPI Wizard Architecture (with an Input Workload and the Final Solution) 
 

approach makes the wizard extensible and portable to different releases of the DBMS server. 
Our tool simply invokes the server’s existing APIs used to simplify the queries, capture fact 
table predicates, and estimate processing costs.  

3.1 The Preprocessing Phase 

The first phase extracts query predicates and checks any constraint in partitioning. This 

phase consists of six steps, as shown in Fig. 2. 
 

input: Q (input query set) 

output: R (non-overlapping range set), M (query-to-range-set map) 

1 Query Simplification (on Q) 
2 Range Extraction (from Q) 

3 Non-Overlapping Range (R) Construction 

4 Field Count Limit Check (on R) 

5 Query-to-Range-Set Map (M) Construction 
6 Partition Count Limit Check (on R)  

Fig. 2. The Preprocessing Phase 
 

Query Simplification: The first step is to simplify the predicates of queries in a given 
workload. In other words, we remove redundant conditions among the queries. For instance, if 

a query predicate has the condition of ‘LO_DISCOUNT IN (1, 4, 5) AND 

LO_DISCOUNT IN (2, 3, 4, 5)’, then the predicate can be simplified as 

‘LO_DISCOUNT IN (4, 5).’ This simplification can be performed via an API call to the 

database server. This simplification is not required for the running example. 
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Table 6. Collected Predicates from Q 

Predicate ID Predicate 

p1 l.LO_DISCOUNT IN (1, 4, 5) 

p2 l.LO_DISCOUNT >= 7 

p3 l.LO_QUANTITY <= 30 

p4 l.LO_QUANTITY >= 25 AND l.LO QUANTITY <= 35 
 

 

Range Extraction: In the subsequent step, we gather the simplified predicates and then 
extract ranges from the collected predicates. This task can also be finished through an API call 

to the server. The query predicate is of the form,  

⟨variable⟩ ⟨op⟩ ⟨constant⟩, 
where ⟨variable⟩ is a field from LINEORDER, ⟨op⟩ is in {= , <, <=, >=, >, IN}, and 

⟨constant⟩ represents a constant value(s). All ⟨op⟩s are self-explanatory. In particular, ‘IN’ 

is a list predicate implying ‘OR’ operator. In the running example, we can collect a set of 

predicates P = {p1, p2, p3, p4} from Q as shown in Table 6. 

Now we build a set of distinct ranges for each field referenced by the predicates. 

Specifically, we gather fields referenced by predicates in P, extract ranges from the predicates, 
and group the ranges of each of the referenced fields. Suppose L to be a list of fact table fields 

referenced by P. In the workload Q, we add in L the following two fields: LO_DISCOUNT and 

LO_QUANTITY used by P. The whole range of the gathered predicates can be represented by 

a kind of two-dimensional array, called R.  

Each entry under a field in R represents a pair of (start and end) values forming the range. 
When it comes to range representation for an entry, ‘[’ and ‘]’ are used for closed ranges while 

‘(’ and ‘)’ for open ranges. Also, infinity (∞) and -infinity (-∞) can be used for unbounded 

ranges. In particular, IN predicate is represented by multiple ranges. The above p1, for 

example, can be represented by the following three ranges [1, 1], [4, 4], [5, 5]; however, the 

last two consecutive ranges can be consolidated as [4, 5]. In the continuing example, the 
per-field distinct range set (R) is comprised of the entries below. 

 R: 

LO_DISCOUNT = {[1, 1], [4, 5], [7, ∞)} 

LO_QUANTITY = {(∞, 30], [25, 35]}. 

In turn, we build another map, called M2, between P and R. That is, we associate each 
predicate in P with a corresponding range in R. Let R[i, j] denote the interval value for the i-th 

field and j-th range in R. For instance, R[1, 3] indicates range [7, ∞) under LO_DISCOUNT. In 

the running example, M2 is constructed as follows: 

M2: 

⟨p1, {R[1, 1], R[1, 2]}⟩  

⟨p2, {R[1 ,3]}⟩ 
⟨p3, {R[2, 1]}⟩ 
⟨p4, {R[2, 2]}⟩. 
 

Non-Overlapping Range Construction: Since there may be multiple predicates on the same 
field across queries, extracted ranges for the field may overlap each other. The overlapping 

ranges must be broken without any common portion, in order that we can consider a pair of 

consecutive, non-overlapping ranges for a merge in subsequent phases.  
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Fig. 3 describes the way of breaking the overlap of ranges. For each field, the algorithm 
gets associated ranges of each field and sorts them by start value. We then check whether 
adjacent ranges overlap each other or not. If that is the case, we make a split between the 

ranges. In the example, the split is applied on the overlapping ranges, (∞, 30] and [25, 35] in 

LO_QUANTITY. Subsequently, we then create a common (or intermediate) range ([25, 30]) 

and insert into the range set belonging to the LO_QUANTITY field, in order to fill the gap.           

R includes the following ranges: 

R: 

LO_DISCOUNT = {[1, 1], [4, 5], [7, ∞)} 

LO_QUANTITY = {(∞, 25), [25, 30], [31, 35]}. 

The update of R affects the existing map M2. In the running example, p3 and p4, influenced by 
the split, are mapped to new range sets, {R[2, 1], R[2, 2]} and {R[2, 2], R[2, 3]}, respectively. 

Of course, the range sets corresponding to p1 and p2 referencing LO_DISCOUNT remains 

unchanged. As a result, in the running example we obtain the updated M2 in the following. 
M2: 

⟨p1, {R[1, 1], R[1, 2]}⟩  

⟨p2, {R[1, 3]}⟩ 
⟨p3, {R[2, 1], R[2, 2]}⟩  

⟨p4, {R[2, 2], R[2, 3]}⟩. 
 

input: R having overlapping ranges 

output: R with consecutive, non-overlapping ranges  

 1 foreach field i ∈ R do 
 2 L ← Get the range set of i from R and sort by start value. 

 3 j=0; 

 4 while j < |L|-1 do 
 5  rj, rj+1 ← Adjacent ranges in L  

 6   if rj+1.end ≥ rj+1.start then 

 7  Make a split by modifying values of rj and rj+1.  

 8   Insert into L an intermediate range if any.  

 9  Re-sort ranges in L and reset j to 0. 
10 end 

11 else j++;  

12 end 

13 Update R with the final L.  
14 end  

Fig. 3. Splitting Overlapping Ranges 

 

Field Count Limit Check: One question that occurs is what if a DBMS has a limit of fields 
that can be used for a partitioning definition. (In the case of Teradata DBMS, up to 64 fields 

can be allowed for an MLPPI definition.) If the number of fields present in R exceeds the field 

count limit, we determine which field(s) should be thrown away to satisfy the limit. (The fact 

table we use has much fewer fields than the limit, and thus, this step will not be executed.) To 
choose victim fields, our tool computes the weighted sum of query cost, which is discussed in 

Section 3.3, of queries regarding each field. The sum can be obtained by adding up every 

query cost on an MLPPI using only the ranges under the field. We incrementally discard a 
field with the largest sum of query cost until reaching the limit. Accordingly, we can update 

the existing M2. One might say that such an MLPPI definition may not be exploited if too 
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many ranges over a partition count limit (65,536 in the case of Teradata DBMS) are found in 

one field. However, we assume that such an extreme case is not expected. Even if such a case 
happens, the merges of consecutive ranges can make the MLPPI feasible. 

 

Query-to-Range-Set Map Construction: Using the existing maps M1 and M2, the tool can 

create the final bi-directional query-to-range-set map, say M, between Q and R. To construct 
M, we leverage a transitive property from M1 to M2. Once we compute M, there is no need to 

keep the intermediate maps (M1 to M2) for the subsequent phases. In the running example, we 

can build M in the following. 
M: 

  ⟨q1, {R[1, 1], R[1, 2], R[2, 1], R[2, 2]}⟩  

⟨q2, {R[1, 3], R[2, 2], R[2, 3]}⟩. 

In the subsequent phases, we use for cost computation and then update M in accordance with a 
merge of ranges; R is refined for an MLPPI recommendation. 

 

Partition Count Limit Check: The range set R can be used to define an MLPPI using each 
field as one level. However, if the current number of partitions by R is greater than the 

aforementioned partition count limit, then it is not possible to make a feasible MLPPI based on 

the ranges in R. 

The actual partition count limit is ample enough to pass the running example, but to 

continue our discussion, assume that in our discussion the limit is 15. From R in the running 

example, we obtain a total of (number of ranges in LO_DISCOUNT) × (number of ranges in 

LO_QUANTITY) = (3+1) × (3+1) = 16 partitions. Note here that one reserved range covering 

the rest but the identified is added by default to each field in the calculation, and the default 

range is equivalent to the ‘NO CASE OR UNKNOWN’ case as shown in Table 1. Since the total 

partitions surpass the limit, the tool should go through the initial phase in which we make 
fewer partitions than the limit. (Otherwise, the wizard can bypass the initial phase and then 

immediately proceed to the optimized phase.) 

The tool is now ready to proceed to the next phases, with R (i.e., an input range set, or 
MGP) and the prepared M (i.e., a query-to-range-set map). 

3.2 The Initial Phase 

This phase incrementally merges a range pair in R to reduce partitions. The merge 

continues until the number of ongoing partitions drops below the partition count limit. After 
finishing the merge, the tool can derive a feasible MLPPI with the remaining partitions. 

Overall, the merge may increase I/O cost, in that the full scan on a partition should be 
carried out to retrieve all the rows potentially matching a given query. In the case of a merged 

partition, we may read the non-qualifying rows that would not be seen before the merge, 

thereby paying more I/O to answer the query. To minimize the merge overhead, we pick up the 
range pair incurring the least I/O increase in a heuristic fashion. To choose a range pair for a 

merge, we calculate the scan cost of a query on the merged range pair. 

Fig. 4 represents how the scan cost can be computed on the range pair that influences a 
given query. The scan cost represents the I/O cost to answer the query when the range pair is 

merged; it is defined as the number of blocks that are to be read for the given query. To  

compute the scan cost of a query q, we write a corresponding scan cost query, denoted by s, 
which can be constructed as follows:  

s:  SELECT * FROM F WHERE CP,  
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Fig. 4. Computing Scan Cost 
 

where F is a fact table such as LINE_ORDER, and CP indicates the predicates restored from  

the ranges mapped to q from M.  

If q turns out to be affected by the merge of a range pair then the range set associated with 

q in M is temporarily updated by removing the parent ranges and adding the merged range. 
The altered range set is remapped to q in M and then translated to the equivalent predicates. 

Then CP for s can be built based on the predicates. Unless the merge range pair influences q, 

we can simply derive CP from the existing ranges mapped to q. 

To see in Fig. 4 how a scan cost query is built, consider a range pair (rp) of R[2, 2] and      

R[2, 3] in the running example. rp produces the merged range, [25, 35], under              

LO_QUANTITY. The merge by rp affects both q1 and q2 in the workload. Thus, the range sets 

of q1 and q2 on LO_QUANTITY are correspondingly altered to {(∞, 25), [25, 35]} and            

{[25, 35]}, respectively. Certainly, no change is made to the existing range sets of the queries 

on LO_DISCOUNT. Therefore, we can build the corresponding scan cost queries for q1 and q2, 

as illustrated in Table 7. Note that because the altered ranges {(∞, 25), [25, 35]} of q1 are not 

discontinuous, the merged, single predicate, which is ‘l.LO_QUANTITY <= 35,’ are built 

for s1 as in the first row of Table 7. 

In turn, the wizard sends each scan cost query to the server through an API call. The tool 
extracts from the server’s response the spool size (in bytes), which is the result size of the sent 
scan cost query, and then calculates as scan cost the block counts (denoted by blc) using the 

spool size. If the merge of a range pair does not influence any query in the workload, the 

existing (previously computed) scan cost of queries is reused for the range pair. In other words, 

the wizard only re-computes the scan cost of a query only if the query is affected by the merge 
of two consecutive ranges. The weighted sum of scan cost of queries, Ts can be computed for 

each range pair. Ts can be defined in the following: 

             n 

Ts = Σ (sci · wi), 
           i =1 

where n is the number of queries in Q, sci is the scan cost of query qi in Q, and wi denotes the 

(non-negative) weight associated with qi.  

input: q (query), rp (range pair), and M (query-to-range-set map) 
output: Scan cost for answering q when considering a merge of rp 

  1 rm ← Consolidate rp 

  2 L ← Copy the range set mapped to q from M; 

  3 Delete ranges in rp from and insert rm into L. 

  4 s ← “SELECT * FROM LINE_ORDER WHERE ” ; 

5 foreach range r ∈ L do  

6   Restore a predicate p from r.  

  7 Add p to WHERE clause of s. 

  8 end 

  9 Make an API call with s to the server.  

10 Extract the spool size (in bytes) from the result. 
11 blc ← Calculate the block counts from the spool size. 

12 Update q’s scan cost to blc. 

13 return blc; 
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     Table 7. The Constructed Scan Cost Queries 

Scan Cost 
Query ID 

Query Text 

s1 

SELECT * FROM LINEORDER l  

WHERE ((l.LO_DISCOUNT = 1) OR  

(l.LO_DISCOUNT >= 4  AND  l.LO_DISCOUNT <= 5))    

AND l.LO_QUANTITY <= 35 

s2 

SELECT * FROM LINEORDER l  

WHERE l.LO_DISCOUNT >= 7 AND  

  (l.LO_QUANTITY >= 25 AND l.LO_QUANTITY <= 35) 

 

    Once examining all range pairs, the tool chooses the range pair with the least Ts for a merge. 

If several range pairs end up with the same least Ts, then the tool applies the heuristic of 

favoring the range pair that produces the fewer number of partitions when merged, to make it 
faster to reach the partition count limit. In the example, suppose that the running range pair, rp, 

produces the least Ts, and thus, the tool merges rp. Thus, we can update both R and M as 

follows. 

R: 

LO_DISCOUNT = {[1, 1], [4, 5], [7, ∞)} 

LO_QUANTITY = {(∞, 25), [25, 35]} 

M: 

     ⟨q1, {R[1, 1], R[1, 2], R[2, 1], R[2, 2]}⟩  

   ⟨q2, {R[1, 3], R[2, 2]}⟩ 

Note that we see that q2 may have the most customized partition based on the updated M. 
Only the single partition formed by (R[1, 3] ∩ R[2, 2]) is sufficient to retrieve all the qualifying 

rows for q2; thus, the other partitions can be simply eliminated. In the meantime, to answer q1, 
we need to read the four partitions formed by the top two ranges of each field. As the partitions 

formed by ((R[1, 1]∪R[1, 2])∩(R[2, 2])) contain the non-qualifying rows for q1, unfortunately, 

R cannot provide q1 with as much benefit as q2. R, however, can be a good compromise to 
satisfy both queries, in that the MLPPI derived by R can potentially minimize the total 

execution cost of Q. 

Fig. 5 describes the initial phase. Given a query-to-range set map (M) and an input range 
set (R), the algorithm determines which range pair to yield the least total execution cost (Ts) 

and updates M and R using the chosen range pair, until the number of the partitions by R falls 
below a pre-defined partition limit count. Finally, the algorithm produces the final 

recommendation based on R.  

In the running example the total partition counts (or 4 × 3=12) by R is under the assumed 
limit (or 15), which meets the partitioning limit. Hence, the wizard can enter the optimized 

phase with R, without repeating the initial phase. 

3.3 The Optimized Phase 

After passing the initial phase, we now have an initial MLPPI recommendation based on R, 

for the LINEORDER fact table. Certainly, we can sufficiently use the initial recommendation. 

However, our emphasis is on the fact that additional merges may make fewer partitions, which 

actually can enhance the overall workload performance for the following reasons. First, 
multiple file contexts by many partitions can incur huge overhead that affects the query 

optimizer. There also exists an operational threshold that the optimizer can handle the 
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Fig. 5. The Initial Phase 
 

maximum number of the partitions at a time. Thus, further reducing partitions greatly helps the 
optimizer to manage these partitions. 

A similar algorithm, as suggested in the initial phase, is applied. Namely, this phase uses 
query cost, which is analogous to scan cost; we can obtain the query cost via a feasible MLPPI. 

The query cost is defined as the estimated processing time of a query on a so-called “faked” 
fact table applying the MLPPI definition that reflects the merge of a range pair. This cost 

estimation technique is similar to the “what-if” approach [8]. 

Fig. 6 illustrates the steps for computing the query cost of a query q. Given a range pair (rp) 
affecting q when merged, we first create an empty shadow table H with the same definition as 

F, including all indexes and constraints such as check and referential integrity ones. Next, we 
propagate all statistics of F to H. This covers field and index statistics. If F has materialized 

views (MVs), then we create the equivalent MVs on H and subsequently, propagate the 

statistics of the MVs on F to the new MVs on H. After that, we alter H by an MLPPI with the 

updated R (now say R’), applying the merge of rp. We then build a shadow query h that is 
equivalent to the input query q and replaces F in q with H. In turn, we make an API call to the 

EXPLAIN tool with h. Eventually, the algorithm extracts from the result and returns the 

estimated elapsed time of h as the query cost associated with q. As in the initial phase, the 

query cost of a query (like q) is recomputed only if the merge affects the query.  

Fig. 7 proposes the algorithm of the optimized phase. W indicates a set of weights assigned 
to individual queries in a given workload. Tp keeps track of the existing least query cost sum, 

and initially is computed on an initial MLPPI. For each range pair, the algorithm computes Tq, 

the respective weighted sum of query costs of the queries in a given workload. (Tq can be 

similarly defined as Ts, described in Section 2.2, and thus the definition of Tq is omitted here.) 

Let the current least Tq be T. If T <= Tp (or the existing least), then for the next iteration Tp is set 

to T. We perform the merge on the range pair that produces that T and update M and R along 

input: M (query-to-range-set map) and R (input range set) 

output: R with # partitions, fewer than or equal to a specified partition limit 

  1 W ← Query weights 
2 while ← (# partitions by R > partition limit) do 

3    foreach range pair, rp ∈ R do   

4        Ts  ← 0; 

5        foreach q ∈ M do   
6            w ← Get q’s weight from W 

7       L ← Get the range set mapped to q in M   

8            if ((rp ∩ L) ≠ ∅) then 

9                   Ts  += w·(getSC(q, rp, M)); // Influenced 

10            else Ts  += w·(q’s existing scan cost) // See Alg. 3 regarding getSC() 

11        end 

12        Associate Ts with rp.  

13   end   
14   Find rp(s) with the least  Ts . 

15   If a tie occurs, then choose the rp to make fewer partitions when being consolidated.  

16   Update M and R by the chosen rp. 

17 end  
18 return R; 
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Fig. 6. Computing Query Cost 
 

Fig. 7. The Optimized Phase 

input: q (query), rp (range pair), M (query-to-range-set map), and R (input range set) 
output: Query cost to answer q when a merge of rp is considered 

 1 Create an empty shadow table H having the same definition as the fact table F,  

   including indexes and all constraints (check and referential integrity constraints). 

2 Propagate all (field and index) statistics of F to H.  
3 if F has materialized views (MVs) then 

4    Create the equivalent MVs on H. 

5    Propagate the statistics of the MVs on F to those of H. 
  6 end 

  7 rm ←Merge rp; 

  8 L ← Copy ranges associated with q from M; 

9 Remove ranges in rp from and add rm to L. 

10 R’ ← Update R with L 
11 Alter H using a fictitious MLPPI with R’. 

12 Construct and send to the server an H-based shadow query h equivalent to q. 

13 ept ← Estimated processing time of h extracted from the server response; 
14 Update q’s query cost to ept.  

15 return ept 

input: M (a query-to-range-set map) and R (an input range set) 

output: an MLPPI solution to produce the minimum total query cost 

1 W ← Query weights 
2 Tq  ← Total query cost sum on an initial MLPPI by R; 

3 while ← (Pre-defined iterations || R ≠ ∅) do 

4    foreach range pair, rp ∈ R do   

5        Tq  ← 0; 

6        foreach q ∈ M do   
7            w ← Get q’s weight from W 

8        L ← Get the range set mapped to q in M   

9            if ((rp ∩ L) ≠ ∅) then 

10               Tq  += w·(getQC(q, rp, M, R)); // Influenced 

11            else Tq  += w·(q’s existing query cost) // See  Fig. 6 on getQC() 

12        end 

13        Map Tq to rp.  

14     end   
15     T ← The least Tq that has been so far seen.  

16     if T > Tp then break; 

17     else 

18       Tp ← T; 

19       Find rp(s) with T. 
20        If a tie occurs, then choose the rp to make fewer partitions when being consolidated.  

21      Update M and R by the chosen rp. 

22     end 

23 end  
24 return an MLPPI by R; 
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with the merge. The algorithm repeats until (i) there are no more ranges in R left, or (ii) the 
number of specified iterations is reached. If T > Tp, then this optimization process is over. 

To break a tie between range pairs, we apply the same heuristic to favor one of the range 
pairs with fewer partitions. The order of the different partitioning levels may influence the 

execution time. A range condition on lower levels like the query in Section 1 ‘SELECT * 

FROM LINEORDER WHERE LO QUANTITY < 25’ requires scanning non-consecutive 

partitions. This may incur some overhead at run time. To reduce this effect, we sort the 

partition levels based on the number of partitions in descending order before making the final 
recommendation. The solution in Table 1 follows this heuristic making the two-partition case 

in the first level followed by the four-partition case in the second level. The order of the output 

in Fig. 1 can go either way since both levels have the same number of partitions. 

In the running example, suppose that in the first round, for instance, a range pair of R[1, 1] 
and R[1, 2] are chosen for a merge. If so, then the wizard produces a merged range, or [1, 5] 

under LO_DISCOUNT; it proceeds to the next round. If a range pair selected for the 

subsequent merge fails to improve Tp, then, the tool exits the optimized phase. The output of 

the tool is represented on the bottom of Fig. 1, and it corresponds to the final MLPPI 

recommendation for the given workload Q. 

4. Complexity Analysis 

We now conduct complexity analysis of the proposed algorithms: preprocessing, initial, 

and optimized phases. We use as the metric on each phase the logical running time of the 

wizard, equivalent to the number of API calls made to the database server during that phase. 

4.1 The Preprocessing Phase 

The following Lemma is the analysis on the running time of the preprocessing phase. 

Lemma 1. The running time complexity for building a query-to-range map is O(N·C·V), 
where N is the number of queries in a workload, C is the total number of fields in the fact table, 
and V is the max number of values in a field. 

Proof. Consider the worst case such that given a workload of N queries, each query 
references all the fields of the fact table, and each field is associated with at most V values by 

the predicates of the queries. Each query may have a single-value range. A range consisting of 

only one value per field can be mapped to each query. Thus, the running time complexity for 
the map construction is is O(N·C·V).  

But our experiments demonstrate that the bound of O(N·C·V) is overly pessimistic. 

4.2 The Initial and Optimized Phases 

The following is the running time complexity on each of the initial and optimized phases. 

Lemma 2. The running time complexity for the initial (or optimized) phase is O(M2·N), 
where M is the number of range pairs, and N is the number of queries in a workload. 

Proof. Suppose that the merge of every range pair influences all the queries. Every 
iteration either the scan or query costs need to be recomputed for each query. In the first round, 

we pay the re-computation cost of M·N and merge a victim range pair. In the subsequent round, 

(M-1) range pairs remain, so the cost amounts to (M-1)·N. In the worst case, we end up 
consolidating all range pairs, thus having no partition on the target table. The number of total 

calls made to the server can be added up as follows:  
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             M 
M·N + (M-1)·N + ··· + N = ( Σ

 
i)·N = (M (M - 1) / 2) ·N 

            i=1
 

Hence, the running time complexity is O(M2·N). □ 

Our experiments also showed that the above running time complexity was overly 
pessimistic. Specifically, the number of calls made in our experiments was by far fewer than 

that bound. That was because it was very rare for a range pair to involve all queries in a given 

workload (as will be seen in Table 8). 

5. Experiments 

In this section we evaluate the performance of our wizard using the proposed algorithms. 
We first describe our environment settings. We then report the statistics measured dur ing our 

experiments. Finally, we compare the performance of the recommendation by the MLPPI 

wizard (WIZARD) with (1) that of no partitioning (NO PPI) and (2) the partitioning of a 
human expert (EXP) under different setups. 

5.1 Environment Settings 

Development: We implemented our MLPPI wizard as a prototype on top of the Teradata 
DBMS server. We developed our wizard in Java. We evaluated the performance of the wizard 

on the Teradata DBMS server machine running UNIX. 

Workload Generation & Deployment: For evaluation, we used synthetic query 
workloads on the SSB mentioned in Section 1. Specifically, to generate the query workloads 
we built a simple star schema query-generator, which assumes that it already knows (i) 

available operators, (ii) fields of the LINEORDER fact table, and (iii) the minimum and 

maximum values of the fields. To build each query, the generator selects a random number to 
specify how many single-table predicates should be created. In turn, the generator randomly 

chooses a field and a specific operator for each predicate. If the IN operator on a chosen field 

is picked up, the query generator determines how many values should be added in the IN 

predicate and then put as many random values in the range of the field as the determined value 

count. In this way, the generator produces a random query involving the generated predicates.  

An individual query is generated based on a template that joins LINEORDER and DDATE 

with constraints defined by the predicates. This template is common, realistic, in real customer 
cases like reports and form templates. We generated two kinds of workloads consisting of 10 

queries (10Q) and 20 queries (20Q). Each query in the workload is similar to q1 in the Table 3.  

Note that even though the generated 10Q and 20Q workloads are synthetic, they are issued 
on the SSB. As specified in the article [3], the SSB is a modified version of the TPC-H 

benchmark [29], which is most popular in measuring the performance of analytical workloads 
on a database server in a practical environment. Therefore, the used query workloads do not 

lose their generality in a real scenario. 

Again, our algorithm is applicable on any other analytical workload as long as the 
workload includes query predicates in general form on a fact table. The “predicates” extracted 
from that workload populates the search space, with which the wizard can start. Those who are 

interested in reproducing our results can try a workload consisting of queries similar to ones in 

Table 3 or an analytical workload extracted from a real environment [27, 28]. 
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Finally, we ran the generated 10Q and 20Q workloads on a fact table populated with a scale 
factor of 1TByte (1TB) and 3TBytes (3TB).  

5.2 Statistics Report 

Table 8 is a summary of the execution statistics measured while the wizard produced 

partitioning solutions for the workloads. The statistics includes (i) input partitions, (ii) range 
pairs, (iii) the number of API calls made, and (iv) total iterations observed in each phase.  

Roughly 1 million partitions were initially derived for 10Q and roughly 0.11 billion 
partitions for 20Q (Item #1). The workload size doubled from 10Q to 20Q, but surprisingly the 

total number of partitions was in an exponential growth. Much more predicates with different 
bindings produced about 110x more ranges in 20Q than those of 10Q. While a great number of 

as shown in the third row (Item #2) in Table 8. 

The total number of iterations in the initial phase tended to be proportional to the input 
partitions generated from the 10Q and 20Q workloads. Note that the optimized phase ran only 

once for those two workloads. Since the partitions produced by the initial phase were 
customized enough, there was no need to iterate for further optimization. 

As mentioned in Section 4, for each workload the number of the total calls to the server was 
extremely small, compared to that of the theoretical worst calls shown in the parentheses   

(Item #3). The worst call counts were calculated regarding the number of queries and range 

pairs observed in each phase. Furthermore, the average number of calls per range pair was 
limited within 10 across the workloads and phases (Item #4).  

Finally, the per-iteration numbers of the average, minimum, and maximum range pairs 

proportionally increased along with the growing workload size (Items #5−#7), while the 
per-iteration numbers of the average, minimum, and maximum API calls increased by more 

than a scale factor of 2x (Items #8−#10). Nevertheless, empirically the number of invoked 

API calls was much fewer than that of the theoretical bound. 

5.3 Performance Evaluation 

The focus of our evaluation is to see the performance (or quality) of MLPPI 

recommendations made by the MLPPI wizard (WIZARD), compared with those of no 
partitioning (NO PPI) and partitioning by a human expert (EXP). 

Fig. 8 exhibits our evaluation results. Specifically, it shows the time taken to run the 10Q 

and 20Q workloads over the 1TB and 3TB fact tables that we populated into the database 

server. Overall, we found that the WIZARD recommendations were “very effective” at 
partitioning the fact tables via the predicates in the given workloads. First, regarding the total 

execution time for the 10Q workload on the 1TB table, WIZARD significantly outperformed 

NO PPI and EXP by about a factor of four and two, respectively, as illustrated in Fig. 8(a). 
More specifically, it took 1076 seconds with NO PPI (the leftmost bar) and 569 seconds with 

EXP (the middle bar), but only 247 seconds with WIZARD (the rightmost bar) for 10Q. Such 

outperformance persisted even when we doubled the workload size (to 20Q). As shown in in 
Fig. 8(b), WIZARD reduced the total execution time for 10Q on the 3TB table by almost four 

times and twice, compared with NO PPI and EXP. The result was almost same; that is, 

WIZARD spent only 1,663 seconds (the rightmost bar) to execute 20Q on the 3TB table while 

6,399 seconds with NO PPI (the leftmost bar) and 2,402 seconds with EXP (the middle bar).  

We further compared the performance of WIZARD and EXP by computing their 
partitioning efficiency, relative to that of NO PPI. Given the time taken for NO PPI set to be 1, 

we calculated the efficiency as reduction factor of the WIZARD and EXP solutions.  
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Table 8. The Runtime Statistics Obtained on Used Workloads 

Item 
The Initial Phase The Optimized Phase 

10Q 20Q 10Q 20Q 
1. The number of input partitions 1,008,000 110,739,200 51,840 59,520 

2. The number of input range pairs 441 4,180 24 48 

3. The number of total API calls 

   (The number of worst calls by Lemma 2) 
1,305 

(1,944,810) 

31,915  

(349,448,000) 

78  

(5,760) 

388  

(46,080) 

4. The number of average API calls per range pair 3 8 3 8 

5. The number of average range pairs compared per iteration 32 76 24 48 

6. The maximum # of range pairs compared per an iteration 38 103 24 48 

7. The minimum # of range pairs compared per an iteration 25 49 24 48 

8. The number of average API calls made per iteration 93 580 78 388 

9. The maximum # of API calls made per an iteration 123 791 78 388 

10. The minimum # of API calls made per an iteration 73 381 78 388 
 

       
(a) 1TB      (b) 3TB 

Fig. 8. Comparison of the Total Elapsed Time 

 
Table 9 shows the reduction factor for each solution on a certain configuration. For instance, 

the value, ‘0.47,’ at the column in the third row, indicates that about 47% of the time taken for 

NO PPI was reduced by EXP for 10Q on the 1TB table. We observed that WIZARD 

consistently outperformed EXP in any combination of the configurations. As exhibited in 
Table 9, the WIZARD solution had a higher factor of reduction than that of EXP on the 1TB 

table. For 10Q, 77% of the total time on NO PPI was reduced, and almost the same efficiency 

(76%) persisted when the workload size increased to 20Q.  

Moreover, the partitioning efficiency by WIZARD was higher than that of EXP even for 
the fact table increased by three times (3TB). That is, the WIZARD’s factor was still 

unchanged (around 0.77 for 10Q and 0.74 for 20Q) while still greater than that of EXP, as 

illustrated in the last column at the three and fourth rows in Table 9. We observe from these 

results that WIZARD solution betters the solution of EXP. In addition, we witness that the 
performance of the proposed tool scales very well with a combination of growing workload 

and table size.  

That said, it is left as future work to apply the proposed tool on a more realistic, complex, 
workload over a further growing fact table. We anticipate that the automated multi-level 

partitioning provided by our tool will still outperform any other candidate in such a real 
scenario. 

In sum, we confirm from our experiment results the effectiveness and efficiency of the 
partitioning recommendation produced by the proposed tool. 
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Table 9. Reduction factor (partitioning efficiency) of EXP and WIZARD on NO PPI; the greater, 
the more efficient 

Fact Table Size 1TB 3TB 

 
EXP WIZARD EXP WIZARD 

10Q 0.47 0.77 0.57 0.77 

20Q 0.58 0.76 0.62 0.74 

6. Conclusion 

In this article, we presented the novel physical database design tool, called MLPPI wizard, 
to recommend a partitioning solution for a given analytical query workload on a huge fact 

table. Since the proposed tool exploits query-predicates to capture necessary ranges for fields 

of the fact table, the algorithms of the tool are easily applicable to any clustering and 
partitioning scheme in a relational DBMS. In addition, the final partitioning solution by the 

proposed tool can be customized for the given workload, as the definition includes 

fine-grained partitions concerning the extracted predicates. We analyzed the running 
complexity for the proposed algorithms. We found that in practice the tool makes much fewer 

API calls than the high bound in theory. Finally, we demonstrated in our experiments that the 

produced MLPPI solutions by the wizard reduced the total elapsed time up to by more than a 

factor of four, compared with existing solutions. The performance of the solutions also scaled 
very well with a combination of growing workload and fact table size. To conclude, the 

proposed wizard is a profitable option for a DBA to be able to draw with little overhead a best 

partitioning to minimize the execution cost of the given workload on the fact table. 
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